Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T17:10:55.286Z Has data issue: false hasContentIssue false

Low dislocation density GaAs grown by the vertical Bridgman technique

Published online by Cambridge University Press:  31 January 2011

R. E. Kremer
Affiliation:
Crystal Specialties, Int'l., 2853 Janitell Road, Colorado Springs, Colorado 80906
D. Francomano
Affiliation:
Crystal Specialties, Int'l., 2853 Janitell Road, Colorado Springs, Colorado 80906
G. H. Beckhart
Affiliation:
Crystal Specialties, Int'l., 2853 Janitell Road, Colorado Springs, Colorado 80906
K. M. Burke
Affiliation:
Crystal Specialties, Int'l., 2853 Janitell Road, Colorado Springs, Colorado 80906
Get access

Abstract

We have developed a new growth process for GaAs that combines advantages found in several methods currently in commercial use, while at the same time minimizing many of the problems inherent in these presently used processes. The new technique, a form of vertical Bridgman (VB) growth, is capable of producing either doped (semiconducting) or undoped semi-insulating GaAs with very low dislocation density.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Parsey, J. M., Semi-insulating III–V Materials, Malmo, 1988 (Adam Hilger, 1988), p. 405.Google Scholar
2Kremer, R. E., Francomano, D., Beckhart, G. H., Burke, K. M., and Miller, T. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1989), Vol. 144, p. 15.CrossRefGoogle Scholar
3Kremer, R. E., Beckhart, G. H., Francomano, D., and Burke, K. M., Proc. Indust. Univ. Adv. Mater. Conf. II, Denver, CO, 243 (1989).Google Scholar
4Gault, W. A., Monberg, E. M., and Clemens, J. E., J. Cryst. Growth 74, 491 (1986).CrossRefGoogle Scholar
5Swiggard, E. M., J. Cryst. Growth 94, 556 (1989).CrossRefGoogle Scholar
6Hoshikawa, K., Nakanishi, H., Kohda, H., and Sasaura, M., J. Cryst. Growth 94, 643 (1989).CrossRefGoogle Scholar
7Martin, G. M., Jacob, G., Hallais, J. P., Grainger, F., Roberts, J. A., Clegg, B., Blood, P., and Poiblaud, G., J. Phys. C: Solid State Phys. 15, 1841 (1982).CrossRefGoogle Scholar
8Bridgman, P. W., Proc. Amer. Acad. Arts Sci. 60, 305 (1925).CrossRefGoogle Scholar
9Dobrilla, P. and Blakemore, J. S., Appl. Phys. Lett. 48, 1303 (1986).CrossRefGoogle Scholar
10Sargent, L. (private communication).Google Scholar
11Bourret, E. D., Elliot, A. G., Lee, B-T., and Jaklevic, J. M., Defect Recognition and Image Processing in III–V Compounds II (Elsevier, 1987), p. 95.Google Scholar
12Bourret, E. D., Guitron, J. B., and Haller, E. E., J. Cryst. Growth 85, 124 (1987).CrossRefGoogle Scholar
13Jordan, A. S. and Parsey, J. M. Jr, J. Cryst. Growth 79, 280 (1986).CrossRefGoogle Scholar
14Jordan, A. S., Caruso, R., and Neida, A. R. Von, Bell Syst. Tech. J. 59, 593 (1980).CrossRefGoogle Scholar
15Kang, C. H., Lagowski, J., and Gatos, H. C., J. Appl. Phys. 62, 3482 (1987).CrossRefGoogle Scholar
16Hunter, A. T., Kimura, H., Baukus, J. P., Winston, H. V., and Marsh, O. J., Appl. Phys. Lett. 44, 74 (1984).CrossRefGoogle Scholar
17Pfann, W. C., J. Metals 4, 747 (1952).Google Scholar
18Desnica, U. V., Cretella, M. C., Pawlowicz, L. M., and Lagowski, J., J. Appl. Phys. 62, 3639 (1987).CrossRefGoogle Scholar
19Ware, R. W. and Linares, R. C., Proc. 1988 U.S. Conf. on GaAs MANufacturing TECHnology, p. 100.Google Scholar
20Kano, Y. (private communication).Google Scholar
21Arai, T., Nozaki, T., Osaka, J., and Tajima, M., Semi-insulating III–V Materials, Malmo, 1988 (Adam Hilger, 1988), p. 201.Google Scholar