Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-17T10:21:06.101Z Has data issue: false hasContentIssue false

Macro-effects of resputtering due to negative ion bombardment of growing thin films

Published online by Cambridge University Press:  31 January 2011

Daniel J. Kester
Affiliation:
Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
Russell Messier
Affiliation:
Materials Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Bombardment of a growing thin film by negative ions can lead to changes in the film through the process of resputtering. Macro-effects of resputtering (effects on the film thickness) include a slowing of the film growth rate and, in some cases, a complete suppression of the film growth as well as an etching of the substrate materials. To study this result of resputtering, rf-diode sputtering was used to deposit BaTiO3 films under a variety of conditions, varying deposition time, rf-power level, substrate-to-target distance, total gas pressure, and argon, oxygen, and hydrogen partial pressures. The effect resputtering had on the thickness was seen to be a result of the competition between deposition and etching of the thin film material. The relative influence of the various sputtering parameters and the effect each of these has on the thickness distribution were examined. It was found that the greatest influence was system geometry, followed by rf-power level. Various methods of controlling resputtering are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gilbert, L. R., Messier, R., and Krishnaswamy, S.V., J. Vac. Sci. Technol. 17, 389 (1980).CrossRefGoogle Scholar
2Shah, S.I., Thin Solid Films 181, 157 (1989).CrossRefGoogle Scholar
3Bruce, R., Eicher, S., and Westwood, W.D., J. Vac. Sci. Technol. A6, 1642 (1988).CrossRefGoogle Scholar
4Kester, D.J. and Messier, R., J. Mater. Res. 8, 1938 (1993).CrossRefGoogle Scholar
5Jones, R.E., Standley, C.L., and Maissel, L.I., J. Appl. Phys. 38, 4656 (1967).CrossRefGoogle Scholar
6Chapman, B.N., Downer, D., and Guimaraes, L. J. M., J. Appl. Phys. 45, 2115 (1974).CrossRefGoogle Scholar
7Hanak, J.J., Le Vide 175, 11 (1975).Google Scholar
8Hanak, J.J. and Pellicane, J.P., J. Vac. Sci. Technol. 13, 406 (1976).CrossRefGoogle Scholar
9Cuomo, J.J., Gambino, R.J., Harper, J.M.E., and Kuptsis, J.D., IBM J. Res. Develop. 21, 580 (1977).CrossRefGoogle Scholar
10Cuomo, J.J., Gambino, R.J., Harper, J.M.E., Kuptsis, J.D., and Webber, J. C., J. Vac. Sci. Technol. 15, 281 (1978).CrossRefGoogle Scholar
11Kester, D.J. and Messier, R., J. Vac. Sci. Technol. A 4, 496 (1986).CrossRefGoogle Scholar
12Neto, A. Sa and Cross, L.E., Thin Solid Films 66, 351 (1980).CrossRefGoogle Scholar
13Hada, T., Hayakawa, S., and Wasa, K., Jpn. J. Appl. Phys. 9, 1078 ((1970)).CrossRefGoogle Scholar
14Shintani, Y., Nakanishi, K., Takawaki, T., and Tada, O., Jpn. J. Appl. Phys. 14, 1875 (1975).CrossRefGoogle Scholar
15Messier, R. and Kester, D. J., Appl. Surf. Sci. 22/23, 111 (1985).Google Scholar
16Tominaga, K., Ueshiba, N., Shintani, Y., and Tada, O., Jpn. J. Appl. Phys. 20, 519 (1981).CrossRefGoogle Scholar
17Krupanidhi, S.B. and Sayer, M., J. Appl. Phys. 56, 3308 (1984).CrossRefGoogle Scholar
18Kageyama, Y. and Taga, Y., J. Vac. Sci. Technol. A 9, 604 (1991).CrossRefGoogle Scholar
19Katayama, T., Koizumi, Y., Hirano, M., and Tsushima, T., J. Phys. Soc. Jpn. 42, 1057 (1977).CrossRefGoogle Scholar
20Gambino, R.J. and Cuomo, J.J., J. Vac. Sci. Technol. 15, 296 (1978).CrossRefGoogle Scholar
21Gilbert, L.R., Messier, R., and Roy, R., Thin Solid Films 54, 129 (1978).CrossRefGoogle Scholar
22Shah, S. I. and Carcia, P. F., Appl. Phys. Lett. 51, 2146 (1987).CrossRefGoogle Scholar
23Springholz, G., Aicholzer, K., Abt, R., Leising, G., Leitner, O., Kranebitter, P., and Polt, P., J. Less-Comm. Met. 151, 377 (1989).CrossRefGoogle Scholar
24Grace, J.M., McDonald, D.B., Reiten, M.T., Olson, J., Kampwirth, R.T., and Gray, K.E., J. Appl. Phys. 70, 3867 (1991).CrossRefGoogle Scholar
25Hofer, W.O., Besocke, K., and Stritzker, B., Appl. Phys. A 30, 83 (1983).CrossRefGoogle Scholar
26Tominaga, K., Iwamura, S., Shintani, Y., and Tada, O., Jpn. J. Appl. Phys. 21, 688 (1982).CrossRefGoogle Scholar
27Xi, X.X., Linker, G., Meyer, O., Nold, E., Obst, B., Ratzel, F., Smithey, R., Strehlau, B., Weschenfelder, F., and Geerk, J., Z. Phys. B 74, 13 (1989).Google Scholar
28Sandstrom, R. L., Gallagher, W. J., Dinger, T. R., Koch, R. H., Laibowitz, R. B., Kleinsasser, A.W., Gambino, R.J., Bumble, B., and Chisholm, M.F., Appl. Phys. Lett. 53, 444 (1988).CrossRefGoogle Scholar
29Eom, C. B., Sun, J. Z., Yamamoto, K., Marshall, A. F., Luther, K. E., Geballe, T. H., and Laderman, S. S., Appl. Phys. Lett. 55, 595 (1989).CrossRefGoogle Scholar