Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T10:35:27.676Z Has data issue: false hasContentIssue false

Microstructural characterization and solidification behavior of atomized Al–Fe powders

Published online by Cambridge University Press:  31 January 2011

Y. Zhou
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92717-2575
J. A. Juarez-Islas
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F., 04510, Mexico
O. Alvarez-Fregoso
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Mexico, D.F., 04510, Mexico
W. Y. Yoon
Affiliation:
Department of Metallurgical Engineering, Korea University, Seoul, 136-701, Korea
E. J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92717-2575
Get access

Abstract

The effect of solidification history on the resultant microstructure in atomized Al–2.56 wt% Fe and Al–6.0 wt% Fe powders was studied, with particular emphasis on droplet size, undercooling, and phase stability. The atomized Al–Fe powders exhibited four microstructural features, i.e., Al3Fe phase (now known as Al13Fe4), Al + Al6Fe, α–Al dendrite, and a predendritic microstructure. The presence of these phases was noted to depend on alloy composition and a kinetic phase competitive growth mechanism due to the initial undercooling experienced by the powders. The occurrence of structures of the predendritic, cellular, and/or dendritic type was properly predicted by the theory of dendrite growth into undercooled alloy melts for the case of large undercoolings.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Turnbull, D., in Undercooled Alloy Phases, edited by Collings, E. W. and Koch, C. C. (AIME-TMS, Warrendale, PA, 1987), pp. 322.Google Scholar
2.Perepezko, J. H., Mueller, B.A., and Ohsaka, K., in Undercooled Alloy Phases, edited by Collings, E.W. and Koch, C. C. (AIME-TMS, Warrendale, PA, 1987), pp. 298320.Google Scholar
3.Flemings, M. C., Shiohara, Y., Wu, Y., and Piccone, T. J., in Undercooled Alloy Phases, edited by Collings, E.W. and Koch, C.C. (AIME-TMS, Warrendale, PA, 1987), pp. 321343.Google Scholar
4.Drehman, A. J. and Turnbull, D., Scripta Metall. 15, 543 (1981).CrossRefGoogle Scholar
5.Anderson, Y.E. and Kemppainen, M.P., in Undercooled Alloy Phases, edited by Collings, E.W. and Koch, C. C. (AIME-TMS, Warrendale, PA, 1987), pp. 269285.Google Scholar
6.Lawley, A., in Processing of Structural Metals by Rapid Solidification, edited by Froes, F.H. and Savage, J.S. (ASM INTERNATIONAL, Metals Park, OH, 1987), pp. 3140.Google Scholar
7.Jones, H., in Rapid Solidification Processing: Principles and Technology, edited by Meharabian, R., Kear, B. H., and Cohen, M. (Claitor's Publishing Division, 1978), pp. 2845.Google Scholar
8.Grant, N.J., in Rapid Solidification Processing: Principles and Technology, edited by Mehrabian, R., Kear, B. H., and Cohen, M. (Claitor's Publishing Division, 1978), pp. 230245.Google Scholar
9.Lavernia, E.J., Ayers, J. D., and Srivatsan, T. S., Int. Mater. Rev. 37, 1 (1992).CrossRefGoogle Scholar
10.Boettinger, W.J., in Rapidly Solidified Amorphous and Crystalline Alloys, edited by Kear, B.H., Giessen, B. C., and Cohen, M. (Mater. Res. Soc. Symp. Proc. 8, Elsevier Science Publishing, New York, 1982), pp. 1531.Google Scholar
11.Skinner, D.J., Okazaki, K., and Adam, C. M., in Rapidly Solidified Powder Aluminum Alloys, edited by Fine, M. E. and Starke, E. A. Jr, (ASTM-STP 890, Philadelphia, PA, 1986), pp. 211236.CrossRefGoogle Scholar
12.Couper, M.J. and Singer, R. F., in High Strength Powder Metallurgy Aluminum Alloys II, edited by Hildeman, G. J. and Kpczak, M. J. (AIME-TMS, Warrendale, PA, 1986), pp. 199211.Google Scholar
13.Bunk, W.G.J, Mater. Sci. Eng. A134, 1087 (1991).CrossRefGoogle Scholar
14.Suryanarayana, C., Froes, F. H., and Quist, W. E., in Advances in Powder Metallurgy, 1991 (American Powder Metallurgy Federation, 1991), Vol. 6, pp. 1529.Google Scholar
15.Gilman, P.S., Rateick, R. G., and Testa, A., in Advances in Powder Metallurgy, 1991 (American Powder Metallurgy Federation, 1991), Vol. 6, pp. 4757.Google Scholar
16.Boettinger, W.J., Bendersky, L., and Early, J. G., Metall. Trans. 17A, 781 (1986).CrossRefGoogle Scholar
17.Cochrane, R.F., Evans, P. V., and Greer, A.L., Mater. Sci. Eng. A133, 803 (1991).CrossRefGoogle Scholar
18.Cochrane, R.F., Newcomb, S. B., Evans, P. V., and Greer, A.L., Key Engineering Mater. 38&39, 21 (1989).Google Scholar
19.Cotton, J. D. and Kaufman, M.J., Metall. Trans. 22A, 927 (1991).CrossRefGoogle Scholar
20.Adam, C.M., in Rapidly Solidified Amorphous and Crystalline Alloys, edited by Kear, B.H., Giessen, B. C., and Cohen, M. (Elsevier, New York, 1982), pp. 411422.Google Scholar
21.Jones, H., Mater. Sci. Eng. 5, 1 (1969).CrossRefGoogle Scholar
22.Perepezko, J. H., Graves, J. A., and Mueller, B. A., in Processing of Structural Metals by Rapid Solidification, edited by Froes, F. H. and Savage, S.J. (ASM INTERNATIONAL, Metals Park, OH, 1987), pp. 1329.Google Scholar
23.Lavernia, E.J., Srivatsan, T. S., and Rangel, R.H., Atomization and Sprays 2, 253 (1992).CrossRefGoogle Scholar
24.Biloni, H. and Chalmers, B., Trans. Metall. Soc. AIME 233, 373 (1965).Google Scholar
25.Juarez-Islas, J. A., Ph. D. Thesis, University of Sheffield, England (1987), p. 35.Google Scholar
26.Turmezey, T., Stefaniay, V., and Griger, A., Key Engineering Mater. 38&39, 43 (1989).Google Scholar
27.Adam, C.M. and Hogan, L. M., J. Australian Inst. Metals 17, 81 (1972).Google Scholar
28.Hughes, Y.R. and Jones, H., J. Mater. Sci. 11, 1781 (1976).CrossRefGoogle Scholar
29.Jones, H., Philos. Mag. B 61, 487 (1990).CrossRefGoogle Scholar
30.Jones, H., Rapid Solidification of Metal and Alloys (Institution of Metallurgists, London, 1982), p. 35.Google Scholar
31.Perepezko, J. H., in Science and Technology of the Undercooled Melts, edited by Sahm, P. R., Jones, H., and Adam, C. M. (Martinus Nijhoff Publishers, 1986), pp. 2952.CrossRefGoogle Scholar
32.Boswell, P.G. and Chadwick, G. A., J. Mater. Sci. 12, 1879 (1977).CrossRefGoogle Scholar
33.Keong, P.G., Sames, J. A., Adam, C. M., and Sharo, R. H., in Rapid Solidification and Casting of Metals (The Metals Society, 1979), pp. 110114.Google Scholar
34.Murray, J. L., in Alloy Phase Diagrams, edited by Bennett, L.H., Massalski, T.B., and Giessen, B.C. (Mater. Res. Soc. Symp. Proc. 19, Elsevier Publishing Co., New York, 1983), pp. 249262.Google Scholar
35.Adam, C.M. and Hogan, L. M., J. Australian Inst. Metals 17 (2), 81 (1972).Google Scholar
36.Lipton, J., Kurz, W., and Trivedi, R., Acta Metall. 35, 957 (1987).CrossRefGoogle Scholar
37.Ivantsov, G.P., Dokl. Akad. Nauk SSSR 58, 567 (1947).Google Scholar
38.Lipton, J., Glicksman, M. E., and Kurz, W., Mater. Sci. Eng. 64, 57 (1984).CrossRefGoogle Scholar
39.Jones, H., Mater. Lett. 6, 181 (1988).CrossRefGoogle Scholar