Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T08:35:27.316Z Has data issue: false hasContentIssue false

Phase equilibria and structural chemistry in the ternary systems M–Si–N and M–B–N (M = Al, Cu, Zn, Ag, Cd, In, Sn, Sb, Au, Tl, Pb, Bi)

Published online by Cambridge University Press:  31 January 2011

F. Weitzer
Affiliation:
Institut für Physikalische Chemie der Universität Wien, Währingerstraβe 42, A-1090 Wien, Austria
K. Remschnig
Affiliation:
Institut für Physikalische Chemie der Universität Wien, Währingerstraβe 42, A-1090 Wien, Austria
J. C. Schuster
Affiliation:
Institut für Physikalische Chemie der Universität Wien, Währingerstraβe 42, A-1090 Wien, Austria
P. Rogl
Affiliation:
Institut für Physikalische Chemie der Universität Wien, Währingerstraβe 42, A-1090 Wien, Austria
Get access

Abstract

Phase equilibria in the ternary systems M–Si–N and M–B–N (M = Cu, Ag, Au, Zn, Cd, Al, In, Tl, Sn, Pb, Sb, and Bi) at temperatures 50–100 °C below the melting point of the metal components were investigated by means of x-ray powder analysis and are represented in the form of isothermal sections. No ternary compound formation was observed in any of the combinations M–Si–N and M–B–N. Silicon nitride and boron nitride, respectively, coexist with all metals investigated and with all binary compounds stable at the chosen temperatures. From unit cell dimensions negligible mutual solid solubilities are indicated between Si3N4 or BN and the metal components.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schuster, J. C. and Nowotny, H., Proc. 11th Int. Plansee Sem. (Reutte, Austria, 1985), Vol. 1, p. 899.Google Scholar
2Weitzer, F. and Schuster, J. C., Solid, J.State Chem. 70, 1781 (1987).CrossRefGoogle Scholar
3Schuster, J. C., J. Mater. Sci. 23, 2792 (1988).CrossRefGoogle Scholar
4Weitzer, F., Rogl, P., and Schuster, J. C., Z. Metallk. 79, 154 (1988).Google Scholar
5Weitzer, F., Schuster, J. C., Bauer, J., and Journel, B., J. Mater. Sci. (submitted for publication).Google Scholar
6Šmid, I. and Rogl, P., in Science of Hard Materials, Inst. of Physics Conf. Series No. 75, edited by Almond, E. A., Brookes, C. A., and Warren, R. (Adam Hilger Ltd., Bristol, Boston, 1986), pp. 249257.Google Scholar
7Rogl, P., Klesnar, H., Fischer, P., Chevalier, B., Buffat, B., Demazeau, G., and Etourneau, J., J. Mater. Sci. Lett. 7, 12291230 (1988).CrossRefGoogle Scholar
8Šmid, I., Rogl, P., and Weitzer, F., Proc. 12th Int. Plansee Sem., edited by Bildstein, H. and Ortner, H. M. (Reutte, Austria, May 1989), Vol. 2, pp. 577598.Google Scholar
9Klesnar, H. and Rogl, P., Proc. 12th Int. Plansee Sem., edited by Bildstein, H. and Ortner, H. M. (Reutte, Austria, May 1989), Vol. 2, pp. 599607.Google Scholar
10Feld, H., Gugel, E., and Nitsche, H. G., Werkstoffe und Korrosion 20, 571 (1969).CrossRefGoogle Scholar
11Yasinskaya, G. A., Poroshkov. Met. 7, 53 (1966).Google Scholar
12Müller, K. and Rebsch, H., Silikattechnik 17, 279 (1966).Google Scholar
13Billy, M., Ann. Chim. 4, 795 (1962).Google Scholar
14Collins, J. F. and Gerby, R. W., J. Metals 7, 612 (1955).Google Scholar
15Sage, A. M. and Histed, J. H., Powder Met. 8, 196 (1981).Google Scholar
16Leimer, G. and Gugel, E., Z. Metallk. 66, 570 (1975).Google Scholar
17Audisio, S. C. and Leidheiser, H., J. Electrochem. Soc. 119, 408 (1972).CrossRefGoogle Scholar
18Calow, C. A. and Barclay, R. B., J. Mater. Sci. 2, 404 (1967).CrossRefGoogle Scholar
19Tsaur, B. Y. and Mayer, J. W., Philos. Mag. A43, 345 (1981).CrossRefGoogle Scholar
20Edelman, F., Gutamas, G., and Brener, R., in Interfaces between Polymers, Metals, and Ceramics, edited by DeKoven, B. M., Gellman, A. J., and Rosenberg, R. (Mater. Res. Soc. Symp. Proc. 153, Pittsburgh, PA, 1989), p. 77.Google Scholar
21Yasinskaya, G. A., Ogneupory 30 (2), 20 (1965).Google Scholar
22Frangos, T. F., Mater. Design. Eng. 1, 115 (1958).Google Scholar
23Tanji, H., Ogata, Y., and Nakajima, Y., Jpn. Kokai 7999 114 (1979).Google Scholar
24Lumby, R. J. and Maybury, J., Canadian patent No. 941 142 (1974).Google Scholar
25Gebhard, E. and Fromm, E., Gase und Kohlenstoff in Metallen (Springer, Berlin, New York, 1976).Google Scholar
26Andrews, E. H., J. Mater. Sci. 1, 377 (1966).CrossRefGoogle Scholar
27Naka, M., Mori, H., Kubo, M., Okamoto, T., and Fujita, H., J. Mater. Sci. Lett. 5, 696 (1986).CrossRefGoogle Scholar
28Brener, R., Edelman, F., and Gutamas, E. Y., Appl. Phys. Lett. 54, 901 (1989).CrossRefGoogle Scholar
29Ning, X. S., Suganuma, K., Okamoto, T., Koreeda, A., and Miyamoto, Y., J. Mater. Sci. 24, 2879 (1989).CrossRefGoogle Scholar
30Ning, X. S., Okamoto, T., Miyamoto, Y., Koreeda, A., and Suganuma, K., J. Mater. Sci. 24, 2865 (1989).CrossRefGoogle Scholar
31Suganuma, K., Okamoto, T., Koizumi, M., and Shimada, M., Adv. Ceram. Mater. 1, 356 (1986).CrossRefGoogle Scholar
32Cook, W. H., At, U. S.. Energ. Comm., ORNL-2391 (1960).Google Scholar
33Asher, R. C., Davis, D., and Beetham, A., Corros. Sci. 17, 545 (1977).CrossRefGoogle Scholar
34Ahn, S. T., Kennel, H. W., Plummer, P. D., and Tiller, W. A., Appl. Phys. Lett. 53, 1593 (1988).CrossRefGoogle Scholar
35Handbook of Binary Phase Diagrams, edited by Moffatt, W. G. (Business Growth Services, General Electric Co., Schenectady, NY, 1976).Google Scholar
36Gurin, V. N. and Korsukova, M. M., in Boron and Refractory Borides, edited by Matkovich, V. I. (Springer, Berlin, Heidelberg, New York, 1977), p. 292.Google Scholar
37Obrowski, W., Naturwiss. 48, 428 (1961).CrossRefGoogle Scholar
38Lundström, T. and Tergenius, L. E., J. Less-Common Metals 47, 23 (1976).CrossRefGoogle Scholar
39Crespo, A. J., Tergenius, L. E., and Lundström, T., J. Less- Common Metals 77, 147150 (1981).CrossRefGoogle Scholar