Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T19:04:04.906Z Has data issue: false hasContentIssue false

Physical processing effects on polycrystalline YBa2Cu3Ox

Published online by Cambridge University Press:  31 January 2011

W. K. Ford
Affiliation:
Department of Physics and the Advanced Materials Center, Montana State University, Bozeman, Montana 59717
J. Anderson
Affiliation:
Department of Physics and the Advanced Materials Center, Montana State University, Bozeman, Montana 59717
G. V. Rubenacker
Affiliation:
Department of Physics and the Advanced Materials Center, Montana State University, Bozeman, Montana 59717
John E. Drumheller
Affiliation:
Department of Physics and the Advanced Materials Center, Montana State University, Bozeman, Montana 59717
C. T. Chen
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
M. Hong
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
J. Kwo
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
S. H. Liou
Affiliation:
AT & T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The effect of heating YBa2Cu3Ox in vacuum to 600 °C has been studied using photoelectron spectroscopy and diamagnetic susceptibility measurements. Evidence of two chemically distinct copper and barium species is found in single phase samples at room temperature cleaned by gentle heating at 450 °C. Such annealing also increases the volume diamagnetic susceptibility of the samples which suggests that the preferred stoichiometry of growth does not lead to an optimum superconducting phase. Samples cleaned by vacuum scraping or ion bombardment reveal more amorphous XPS structure and are less indicative of bulk properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ford, W. K., Chen, C.T., Anderson, J., Kwo, J., Liou, S.H., Hong, M., Rubenacker, G. V., and Drumheller, J. E., Phys. Rev. B1, 7924 (1988).CrossRefGoogle Scholar
2Cava, J., Batlogg, B., Dover, R. B. van, Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Rietman, E. A., Zahurak, S., and Espinosa, G.P., Phys. Rev. Lett. 58, 1676 (1987).CrossRefGoogle Scholar
3Jorgensen, J.K., Veal, B.W., Kowk, W. K., Crabtree, G.W., Umezawa, A., Nowicki, L.J., and Paulikas, A. P., Phys. Rev. B 36, 5731 (1987).CrossRefGoogle Scholar
4Doveren, H. van and Verhoeven, J. A. Th., J. Electron Spectrosc. Relat. Phenom. 21, 265 (1980).CrossRefGoogle Scholar
5Qiu, L., Ruckman, M. W., Brookes, N., Johnson, P. D., Chen, J., Lin, C. L., Strongin, M., Sinkovic, B., J. E. Crow, and C.-S. Jee, Phys. Rev. B 37, 3747 (1988).Google Scholar
6Miller, D.C., Fowler, D. E., Brundle, C.R., and Lee, W. Y., in AVS Series 3, AIP Conference Proceedings #165, 366 (1988).Google Scholar
7Fujimore, A., Takayama-Muromachi, E., Uchida, Y., and Okai, B., Phys. Rev. B 35, 8814 (1987).CrossRefGoogle Scholar
8Kurtz, R. L., Stockbauer, R. L., Mueller, D., Shih, A., Toth, L. E., Osofsky, M., and Wolf, S. A., Phys. Rev. B 35, 8818 (1987).CrossRefGoogle Scholar
9Steiner, P., Kinsinger, V., Sander, I., Siegwart, B., Hiifner, S., and Politis, C., Z. Phys. B 67, 19 (1987).CrossRefGoogle Scholar
10Drumheller, J. E., Rubenacker, G. V., Ford, W. K., Anderson, J., Hong, M., Liou, S.H., and Chen, C.T., Solid State Commun. 64, 509 (1987).CrossRefGoogle Scholar