Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T10:44:26.496Z Has data issue: false hasContentIssue false

Positive temperature coefficient of resistivity effect in Pb-doped KnbO3

Published online by Cambridge University Press:  31 January 2011

Irena Pribošič
Affiliation:
Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
Darko Makovec
Affiliation:
Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
Miha Drofenik
Affiliation:
Jožef Stefan Institut, Jamova 39, Ljubljana, Slovenia, and Faculty for Chemistry and Chemical Engineering, University of Maribor, Slovenia
Get access

Abstract

KnbO3 is a ferroelectric material with a Curie temperature (TC) at 415°C, thus giving it the potential to be a material for high-temperature positive temperature coefficient of resistivity (PTCR) applications. In this study, we investigated the PTCR effect in donor-doped KnbO3 ceramics containing 0, 0.1, 0.2, and 0.3 mol% PbO. The donor-doped KnbO3 ceramics exhibited a PTCR anomaly with a relatively low room-temperature resistivity. The temperature of the tetragonal-to-cubic phase transition (TC) of the KnbO3 decreased with the amount of added PbO, while the orthorhombic-to-tetragonal phase transition (TOT) remained unchanged.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Huybrechts, B., Ishizaki, K., and Takata, M., J. Mater. Sci. 30, 2463 (1995).CrossRefGoogle Scholar
2.Nagamoto, H., Kagotani, H., and Okubo, T.. J. Am. Ceram. Soc. 76, 2053 (1993).CrossRefGoogle Scholar
3.Lai, C.H. and Tseng, T.Y., J. Am. Ceram. Soc. 77, 2419 (1994).CrossRefGoogle Scholar
4.Kuwabara, M., J. Am. Ceram. Soc. 73, 1438 (1990).CrossRefGoogle Scholar
5.Lin, Y.Y., Hu, C.T., Chang, H.Y., and Lin, I.N., J. Appl. Phys. 83, 1321 (1998).CrossRefGoogle Scholar
6.Bondarenko, E.I., Pavlov, A.N., Raevskii, I.P., Prokopalo, O.I., Emal'yanov, S.M., and Tarasenko, P.F., Sov. Phys. Solid State 27, 1517 (1985).Google Scholar
7.Prokopalo, O.I., Raevskii, I.P., Bondarenko, E.I., and Pavlov, A.N., Ferroelectrics Lett. 2, 1 (1984).CrossRefGoogle Scholar
8.Raevskii, I.P., Bondarenko, E.I., Pavlov, A.N., and Prokopalo, O.I., Ferroelectrics 76, 55 (1987).CrossRefGoogle Scholar
9.Raevskii, I.P., Pavlov, A.N., Prokopalo, O.I., and Bondarenko, E.I., Ferroelectrics 83, 171 (1988).CrossRefGoogle Scholar
10.Er, G. and Ishida, S., J. Ceram. Soc. Jpn. 105, 1050 (1997).CrossRefGoogle Scholar
11.Shannon, R.D., Acta. Crystall. A 32, 751 (1976).CrossRefGoogle Scholar
12.Drofenik, M., Am. Ceram. Soc. 70, 311 (1987).CrossRefGoogle Scholar
13.Heywang, W., Solid-State Electron. 3, 51 (1961).CrossRefGoogle Scholar
14.Daniels, J. and Wernicke, R., Philips Res. Rep. 31, 544 (1976).Google Scholar
15.Maiti, H.S. and Basu, R.N., Mater. Res. Bull. 21, 1107 (1986).CrossRefGoogle Scholar
16.Jonker, H.G., Solid-State Electron. 7, 895 (1964).CrossRefGoogle Scholar
17.Daniels, J., Hardtl, K.K., and Wernicke, R., Philips Tech. Rev. 38, 73 (1978/1979).Google Scholar
18.Makovec, D., Ule, N., and Drofenik, M., J. Am. Ceram. Soc. 84, 1273 (2001).CrossRefGoogle Scholar
19.Seuter, A.M.J.H., Philips Res. Rep. Suppl. 3, 1 (1974).Google Scholar
20.Desu, S.B. and Payne, D.A., J. Am. Ceram. Soc. 73, 3416 (1990).CrossRefGoogle Scholar