Article contents
Surface nanodeformation of discontinuously reinforced Ti composite by in situ atomic force microscope observation
Published online by Cambridge University Press: 31 January 2011
Abstract
The surface nanodeformation of a discontinuously reinforced Ti–6Al–4V composite during tensile loading was investigated by in situ atomic force microscope (AFM) observation. The material used was a TiB whisker and TiC particle reinforced Ti–6Al–4V composite. The evolution of surface roughness and slip band spacing was quantified as a function of applied strain. The microstructural damage during tensile loading was also studied. The formation of slip bands within a grain of the Ti–6Al–4V matrix was clearly observed when the applied strain above was 1.3%. The amount of slip bands and surface roughness increase with increasing applied strain. The rupture of TiC particle and multiple cracking of TiB whiskers were also observed at the applied strain above 1.3%. The interaction of slip bands with the reinforcements and mechanisms of deformation and fracture of the composite were elucidated.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
REFERENCES
- 5
- Cited by