Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T15:47:00.393Z Has data issue: false hasContentIssue false

A time-resolved x-ray diffraction study of Ti5Si3 product formation during combustion synthesis

Published online by Cambridge University Press:  31 January 2011

C. R. Kachelmyer
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
I. O. Khomenko
Affiliation:
Institute of Structural Macrokinetics, Russian Academy of Science, Chernogolovka, 142 432 Russia
A. S. Rogachev
Affiliation:
Institute of Structural Macrokinetics, Russian Academy of Science, Chernogolovka, 142 432 Russia
A. Varma*
Affiliation:
Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

Time-resolved x-ray diffraction (TRXRD) was performed during Ti5Si3 synthesis by the self-propagating high-temperature synthesis mode for different Ti size fractions. It was determined that the time for product formation (ca. 15 s) was independent of Ti particle size. However, the formation of Ti5Si4 phase occurred when relatively large titanium particles were used. A simultaneous measurement of the temperature and TRXRD allowed us to attribute the shifting of XRD peaks at high temperature to thermal expansion of the Ti5Si3 product. The thermal expansion coefficients differ for different crystal planes, and their numerical values compare well with those reported previously in the literature.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Meschter, P. J. and Schwartz, D. S., J. Metals 41 (11), 52 (1989).Google Scholar
2.Rosenkranz, R., Frommeyer, G., and Smarsly, W., Mater. Sci. Eng. A152, 288 (1992).CrossRefGoogle Scholar
3.Murarka, S. P., Silicides for VLSI Applications (Academic Press, San Diego, CA, 1993), p. 200.Google Scholar
4.Munir, Z. A. and Anseli-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).CrossRefGoogle Scholar
5.Holt, J. B. and Dunmead, S. D., Ann. Rev. Mater. Sci. 21, 305 (1991).CrossRefGoogle Scholar
6.Varma, A. and Lebrat, J-P., Chem. Eng. Sci. 47, 2179 (1992).CrossRefGoogle Scholar
7.Merzhanov, A. G., Comb. Sci. Technol. 98, 307 (1994).CrossRefGoogle Scholar
8.Sarkisyan, A. R., Dolukhanyan, S. K., Borovinskaya, I. P., and Merzhanov, A. G., Comb. Expl. Shock Waves 14, 310 (1978).Google Scholar
9.Azatyan, T. S., V. M. Mal′tsev, Merzhanov, A. G., and Seleznev, V. A., Comb. Explos. Shock Waves 15, 35 (1979).CrossRefGoogle Scholar
10.Zenin, A. and Nersisyan, G., Chemical Physics of Combustion Explosions: Combustion of Condensed and Heterogeneous Systems, in Russian (Chernogolovka, Russia, 1980), p. 63.Google Scholar
11.Trambukis, J. and Munir, Z. A., J. Am. Ceram. Soc. 73, 1240 (1990).CrossRefGoogle Scholar
12.Rogachev, A. S., Shugaev, V. A., Khomenko, I. O., Varma, A., and Kachelmyer, C. R., Combust. Sci. Technol. 109, 53 (1995).CrossRefGoogle Scholar
13.Aleksandrov, V. V., Korchagin, M. A., Tolochko, B. P., and Sheromov, M. A., Comb. Expl. Shock Waves 19, 430 (1983).CrossRefGoogle Scholar
14.Wong, J., Larson, E. M., Holt, J. B., Waide, P. A., Rupp, B., and Frahm, R., Science 249, 1406 (1990).CrossRefGoogle Scholar
15.Rogachev, A. S., Varma, A., and Merzhanov, A. G., Int. J. SHS 2, 25 (1993).Google Scholar
16.Rogachev, A. S., Khomenko, I. O., Varma, A., Merzhanov, A. G., and Ponomarev, V. I., Int. J. SHS 3, 239 (1994).Google Scholar
17.Larson, E. M., Wong, Joe, Holt, J. B., Waide, P. A., Nutt, G., Rupp, B., and Terminello, L. J., J. Mater. Res. 8, 1533 (1993).CrossRefGoogle Scholar
18.Rupp, B., Wong, Joe, Holt, J. B., and Waide, P., J. Alloys Compounds 209, 25 (1994).CrossRefGoogle Scholar
19.Binary Alloy Phase Diagrams, edited by Massalski, T. B., Okamoto, H., Subramanian, P. R., and Kacprzak, L. (ASM INTERNATIONAL, Materials Park, OH, 1990).Google Scholar
20.Merzhanov, A. G., Borovinskaya, I. P., Ponomarev, V. I., Khomenko, I. O., Zanevskiy, Yu. V., Chernenko, S. P., Smykov, L. P., and Cherenukhina, G. A., Dokl. RAN 328, 72 (1993).Google Scholar
21.Samsonov, G. V. and Vinitskii, I. M., Handbook of Refractory Compounds (Plenum, New York, 1980).CrossRefGoogle Scholar
22.Kumar, K. S. and Liu, C. T., JOM 45 (6), 28 (1993).CrossRefGoogle Scholar
23.Megaw, H. D., Mater. Res. Bull. 6, 1007 (1971).CrossRefGoogle Scholar
24.Richardson, D. W., Modern Ceramic Engineering (Marcel Dekker, Inc., New York, 1992), p. 157.Google Scholar