Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-18T06:26:02.488Z Has data issue: false hasContentIssue false

Transient transmission oscillations in doped and undoped lithium niobate induced by near-infrared femtosecond pulses

Published online by Cambridge University Press:  09 November 2018

Bryan J. Crossman
Affiliation:
Department of Physics, College of St. Benedict/St. John’s University, Collegeville, Minnesota 56321, USA
Gregory J. Taft*
Affiliation:
Department of Physics, College of St. Benedict/St. John’s University, Collegeville, Minnesota 56321, USA
*
a)Address all correspondence to this author. e-mail: gtaft@csbsju.edu
Get access

Abstract

Transient transmission oscillations in X-cut and Z-cut congruent, iron-doped, and magnesium-doped lithium niobate samples were measured using 50 fs, 800 nm, 0.5 nJ pulses from a self-mode-locked Ti:sapphire laser in an optical pump–probe system. Several Raman-active oscillation modes excited by these pulses were observed as changes in the transmitted probe intensity versus time delay between the pump and probe pulses. The samples were rotated to determine how the incident polarization of the pump pulses affects the mode excitations. The observed Raman-active oscillations correspond to previously reported symmetry modes measured with traditional, continuous-wave, Raman spectroscopy using the same scattering geometry. In addition, a polariton mode and other, previously unreported, lower-frequency modes were observed in each of the samples. The transmission intensity data for each sample were fit successfully to a superposition of sinusoidal functions with exponentially decaying amplitudes.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Weis, R.S. and Gaylord, T.K.: Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 37, 191 (1985).CrossRefGoogle Scholar
Yariv, A., Orlov, S.S., and Rakuljic, G.A.: Holographic storage dynamics in lithium niobate: Theory and experiment. J. Opt. Soc. Am. B 13, 2513 (1996).CrossRefGoogle Scholar
Mankowsky, R., von Hoegen, A., Först, M., and Cavalleri, A.: Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).CrossRefGoogle ScholarPubMed
Thomson, R.R., Campbell, S., Blewett, I.J., Kar, A.K., and Reid, D.T.: Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett. 88, 111109 (2006).CrossRefGoogle Scholar
Gorelik, V.S. and Sverbil, P.P.: Raman scattering by longitudinal and transverse optical vibrations in lithium niobate single crystals. Inorg. Mater. 51, 1104 (2015).CrossRefGoogle Scholar
Schauzele, R.F. and Weber, M.J.: Raman scattering by lithium niobate. Phys. Rev. 152, 705 (1966).CrossRefGoogle Scholar
Zhang, Y., Guilbert, L., Bourson, P., Polgár, K., and Fontana, M.D.: Characterization of short-range heterogeneities in sub-congruent lithium niobate by micro-Raman spectroscopy. J. Phys.: Condens. Matter 18, 957 (2006).Google Scholar
Ikegaya, Y., Sakaibara, H., Minami, Y., Katayama, I., and Takeda, J.: Real-time observation of phonon-polariton dynamics in ferroelectric LiNbO3 in time- frequency space. Appl. Phys. Lett. 107, 062901 (2015).CrossRefGoogle Scholar
Planken, P.C.M., Noordam, L.D., Kermis, T.M., and Lagendijk, A.: Femtosecond time-resolved study of the generation and propagation of phonon polaritons in LiNbO3. Phys. Rev. B 45, 7106 (1992).CrossRefGoogle ScholarPubMed
Gorelik, V.S., Zolotukhin, O.G., Moskaleva, T.V., and Sushchinskiĭ, M.M.: Stimulated Raman scattering by transverse and longitudinal lattice vibrations in LiNbO3 and LiTaO3. Sov. J. Quant. Electron. 13, 1300 (1983).CrossRefGoogle Scholar
Dhar, L., Rogers, J.A., and Nelson, K.A.: Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157 (1994).CrossRefGoogle Scholar
Turchinovich, D., Uhd Jepsen, P., Monozon, B.S., Koch, M., Lahmann, S., Rossow, U., and Hangleiter, A.: Ultrafast polarization dynamics in biased quantum wells under strong femtosecond optical excitation. Phys. Rev. B 68, 241307 (2003).CrossRefGoogle Scholar
Beyer, O., Breunig, I., Kalkum, F., and Buse, K.: Photorefractive effect in iron-doped lithium niobate crystals induced by femtosecond pulses of 1.5 µm wavelength. Appl. Phys. Lett. 88, 051120 (2006).CrossRefGoogle Scholar
Volk, T.R., Pryalkin, V.I., and Rubinina, N.M.: Optical-damage-resistant LiNbO3:Zn crystal. Opt. Lett. 15, 996 (1990).CrossRefGoogle Scholar
Furukawa, Y., Kitamura, K., Ji, Y., Montemezzani, G., Zgonik, M., Medrano, C., and Günter, P.: Photorefractive properties of iron-doped stoichiometric lithium niobate. Opt. Lett. 22, 501 (1997).CrossRefGoogle ScholarPubMed
Mouras, R., Fontana, M.D., Bourson, P., and Postnikov, A.V.: Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy. J. Phys.: Condens. Matter 12, 5053 (2000).Google Scholar
Buse, K., Adibi, A., and Psaltis, D.: Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665 (1998).CrossRefGoogle Scholar
Taft, G.J., Newby, M.T., Hrebik, J.J., Onellion, M., George, T.F., Szentesi, D., Szatmari, S., and Nanai, L.: Ultrafast dynamic reflectivity of vanadium pentoxide. J. Mater. Res. 23, 308 (2008).CrossRefGoogle Scholar
Taft, G., Rundquist, A., Murnane, M.M., Kapteyn, H.C., DeLong, K., Trebino, R., and Christov, I.: Ultrafast optical waveform measurements using frequency resolved optical gating. Opt. Lett. 20, 743 (1995).CrossRefGoogle Scholar
Beyer, O., Maxein, D., Buse, K., Sturman, B., Hsieh, H.T., and Psaltis, D.: Femtosecond time-resolved absorption processes in lithium niobate crystals. Opt. Lett. 30, 1366 (2005).CrossRefGoogle ScholarPubMed
Hu, J., Misochko, O.V., Takahashi, H., Koguchi, H., Eda, T., and Nakamura, K.G.: Ultrafast zone-center coherent lattice dynamics in ferroelectric lithium tantalate. Sci. Technol. Adv. Mater. 12, 034409 (2011).CrossRefGoogle ScholarPubMed
Sasaki, H., Tanaka, R., Okano, Y., Minami, F., Kayanuma, Y., Shikano, Y., and Nakamura, K.G.: Coherent control theory and experiment of optical phonons in diamond. Sci. Rep. 8, 9609 (2018).CrossRefGoogle Scholar