No CrossRef data available.
Published online by Cambridge University Press: 05 May 2011
A fiber Bragg grating (FBG) sensor system which can simultaneously measure the point-wise, out-of-plane and in-plane dynamic displacements is proposed. A demodulation system based on the fiber Bragg grating filter is used. The steady-state responses of particle motions of a piezoceramic plate measured by the FBG out-of-plane and in-plane displacement sensors are simultaneously compared with those obtained by a laser Doppler vibrometer (LDV) and a surface-mounted FBG strain sensor, respectively. The integration of the FBG displacement sensor with a dynamic signal analyzer (FBG-DSA) forms a measurement system which has the ability to acquire the frequency response of a piezoceramic plate. An LDV-DSA system and an impedance analyzer are used to compare the results obtained from the dynamic signal analyzer combined with the out-of-plane FBG sensor (OFBG-DSA) and the in-plane FBG sensor (IFBG-DSA), respectively. The experimental results of the impulse excitation as well as the random excitation of the piezoceramic plate are also presented. To explain the experimental results, an optical full-field measurement technique called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and FEM numerical calculations are also used to provide full-field vibration mode shapes of the piezoceramic plate. These results indicate that the proposed displacement sensor system has the multiplexing capability to measure the dynamic displacements up to 45kHz.