Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T10:02:14.462Z Has data issue: false hasContentIssue false

A novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control without steady-state oscillation

Published online by Cambridge University Press:  14 December 2021

Zhipeng Shen*
Affiliation:
College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
Xuechun Fan
Affiliation:
College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
Haomiao Yu
Affiliation:
College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
Chen Guo
Affiliation:
College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
Saisai Wang
Affiliation:
College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, People's Republic of China
*
*Corresponding author. E-mail: yuhaomiao1983@163.com

Abstract

This paper proposes a novel speed optimisation scheme for unmanned sailboats by sliding mode extremum seeking control (SMESC) without steady-state oscillation. In the sailing speed optimisation scheme, an initial sail angle of attack is first computed by a piecewise constant function in the feed forward block, which ensures a small deviation between sailing speed and the maximum speed. Second, the sailing speed approaches to maximum gradually by extremum search control (ESC) in the feedback block. In SMESC without steady-state oscillation, a switching law is designed to carry out the control transformation, so that the speed optimisation system carries out SMESC in the first convergence phase and ESC without steady-state oscillation in the second stability phase. This scheme combines the advantages of both control algorithms to maintain a faster convergence rate and to eliminate steady-state oscillation. Furthermore, the strict stability of the speed optimisation system is proved in this paper. Finally, we test a 12-m mathematical model of an unmanned sailboat in the simulation to demonstrate the effectiveness and robustness of this speed optimisation scheme.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adetola, V. and Guay, M. (2007). Parameter convergence in adaptive extremum-seeking control. Automatica, 43(1), 105110. doi:10.1016/j.automatica.2006.07.021.CrossRefGoogle Scholar
Bezzo, N., Griffin, B., Cruz, P., Donahue, J., Fierro, R. and Wood, J. (2014). A cooperative heterogeneous mobile wireless mechatronic system. IEEE/ASME Transactions on Mechatronics, 19(1), 2031. doi:10.1109/TMECH.2012.2218254.CrossRefGoogle Scholar
Castanos, F. and Kunusch, C. (2015). Ditherless extremum seeking for hydrogen minimization in PEM fuel cells. IEEE Transactions on Industrial Electronics, 62(8), 52185226. doi:10.1109/tie.2015.2426143.CrossRefGoogle Scholar
Corno, M., Formentin, S. and Savaresi, S. M. (2016). Data-driven online speed optimization in autonomous sailboats. IEEE Transactions on Intelligent Transportation Systems, 17(3), 762771. doi:10.1109/TITS.2015.2483022.CrossRefGoogle Scholar
Deng, Y., Zhang, X. and Zhang, G. (2019). Fuzzy logic based speed optimization and path following control for sail-assisted ships. Ocean Engineering, 171, 300310. doi:10.1016/j.oceaneng.2018.11.006.Google Scholar
Dinqmen, E. and Altinel, T. (2016). An emergency braking controller based on extremum seeking with experimental implementation. The International Journal of Dynamics and Control, 6(4), 114. doi:10.1007/s40435-016-0286-2.Google Scholar
Drakunov, S., Ozguner, U., Dix, P. and Ashrafi, B. (1995). ABS control using optimum search via sliding modes. IEEE Transactions on Control Systems Technology, 3(1), 7985. doi:10.1109/CDC.1994.411013.CrossRefGoogle Scholar
Elkaim, H. G. (2006). The Atlantis Project: A GPS-guided wing-sailed autonomous catamaran. Journal of the Institute of Navigation, 53(4), 237247. doi:10.1002/j.2161-4296.2006.tb00386.x.CrossRefGoogle Scholar
Guay, M. and Zhang, T. (2003). Adaptive extremum seeking control of nonlinear dynamic systems with parametric uncertainties. Automatica, 39(7), 12831293. doi:10.1016/S0005-1098(03)00105-5.CrossRefGoogle Scholar
Herrero, P., Jaulin, L., Veh, J. and Sainz, M. A. (2010). Guaranteed set-point computation with application to the control of a sailboat. International Journal of Control, Automation, and Systems, 8(1), 17. doi:10.1007/s12555-010-0101-3.CrossRefGoogle Scholar
Kai, T. and Jouffroy, J. (2010). Real-Time Sail and Heading Optimization for a Surface Sailing Vessel by Extremum Seeking Control. International Scientific Colloquium, Ilmenau, Germany, 198–203.Google Scholar
Krieger, J. P. and Krstic, M. (2013). Aircraft endurance maximization at medium mach numbers by extremum seeking. Journal of Guidance, Control, and Dynamics, 36(2), 390403. doi:10.2514/1.58364.CrossRefGoogle Scholar
Neal, M. (2006). A hardware proof of concept of a sailing robot for ocean observation. IEEE Journal of Oceanic Engineering, 31(2), 462469. doi:10.1109/JOE.2006.875101.CrossRefGoogle Scholar
Pan, Y. and Qzguner, U. (2002). Extremum Seeking Control with Sliding Mode. Proceedings of the IFAC 15th Triennial World Congress, Barcelona, Spain, 371–376.CrossRefGoogle Scholar
Pan, Y., Qzguner, U. and Acarman, T. (2003). Stability and performance improvement of extremum seeking control with sliding mode. International Journal of Control, 76(9/10), 968985. doi:10.1080/0020717031000099100.CrossRefGoogle Scholar
Plumet, F., Petres, C., Romero-Ramirez, M. A., Gas, B. and Ieng, S. H. (2015). Toward an autonomous sailing boat. IEEE Journal of Oceanic Engineering, 40(2), 397407. doi:10.1109/JOE.2014.2321714.CrossRefGoogle Scholar
Rynne, P. F. and Von Ellenrieder, K. D. (2009). Unmanned autonomous sailing: Current status and future role in sustained ocean observations. The Marine Technology Society Journal, 43(1), 2130. doi:10.4031/mtsj.43.1.11.CrossRefGoogle Scholar
Saoud, H., Hua, M. D., Plumet, F. and Amar, F. B. (2015a). Routing and Course Control of an Autonomous Sailboat. European Conference on Mobile Robots, UK, 334–339.Google Scholar
Saoud, H., Hua, M. D., Plumet, F. and Amar, F. B. (2015b). Optimal Sail Angle COMPUTATION for an Autonomous Sailboat Robot. IEEE Conference on Decision and Control, Osaka, Japan, 807–813.CrossRefGoogle Scholar
Shen, Z., Wang, S., Yu, H. and Guo, C. (2019). Online speed optimization with feedforward of unmanned sailboat via extremum seeking without steady-state oscillation. Ocean Engineering, 189, 106393. doi:10.1016/j.oceaneng.2019.106393.CrossRefGoogle Scholar
Stelzer, R. and Proll, T. (2008). Autonomous sailboat navigation for short course racing. Robotics and Autonomous Systems, 56(7), 604614. doi:10.1016/j.robot.2007.10.004.CrossRefGoogle Scholar
Viola, I. M. and Flay, R. G. J. (2012). Sail aerodynamics: On-water pressure measurements on a downwind sail. Journal of Ship Research, 54(4), 197206. doi:10.5957/JOSR.56.4.110003.CrossRefGoogle Scholar
Wang, L., Chen, S. and Ma, K. (2016). On stability and application of extremum seeking control without steady-state oscillation. Automatica, 68, 1826. doi:10.1016/j.automatica.2016.01.009.CrossRefGoogle Scholar
Wille, K. L., Hassani, V. and Sprenger, F. (2016). Modeling and Course Control of Sailboats. IFAC Conference on Control Applications in Marine Systems, Norway, 532–539.CrossRefGoogle Scholar
Xiao, L. and Jouffroy, J. (2014). Modeling and nonlinear heading control of sailing yachts. IEEE Journal of Oceanic Engineering, 39(2), 256268. doi:10.1109/JOE.2013.2247276.CrossRefGoogle Scholar
Xiao, L., Alves, J. C., Cruz, N. A. and Jouffroy, J. (2012). Online Speed Optimization for Sailing Yachts Using Extremum Seeking. MTS/IEEE Oceans’12, VA, USA, 1–6.Google Scholar
Yin, C., Chen, Y. and Zhong, S. (2014). Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica, 50(12), 31733181. doi:10.1016/j.automatica.2014.10.027.CrossRefGoogle Scholar
Zhang, C. and Ordonez, R. (2007). Numerical optimization-based extremum seeking control with application to ABS design. IEEE Transactions on Automatic Control, 52(3), 454467. doi:10.1109/TAC.2007.892389.CrossRefGoogle Scholar