Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T19:35:15.790Z Has data issue: false hasContentIssue false

Beyond the print—virtual paleontology in science publishing, outreach, and education

Published online by Cambridge University Press:  14 July 2015

Stephan Lautenschlager
Affiliation:
School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK,
Martin Rücklin
Affiliation:
School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol, BS8 1RJ, UK, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands,

Abstract

Virtual paleontology unites a variety of computational techniques and methods for the visualization and analysis of fossils. Due to their great potential and increasing availability, these methods have become immensely popular in the last decade. However, communicating the wealth of digital information and results produced by the various techniques is still exacerbated by traditional methods of publication. Transferring and processing three-dimensional information, such as interactive models or animations, into scientific publications still poses a challenge. Here, we present different methods and applications to communicate digital data in academia, outreach and education. Three-dimensional PDFs, QR codes, anaglyph stereo imaging, and rapid prototyping—methods routinely used in the engineering, entertainment, or medical industries—are outlined and evaluated for their potential in science publishing and public engagement. Although limitations remain, these are simple, mostly cost-effective, and powerful tools to create novel and innovative resources for education, public engagement, or outreach.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P. S. L., Bright, J. A., Gill, P. G., Palmer, C., and Rayfield, E. J. 2012. Models in palaeontological functional analysis. Biology Letters, 8:119122.CrossRefGoogle ScholarPubMed
Barnes, D. G., Vidiassov, M., Ruthensteiner, B., Fluke, C. J., Quayle, M. R., and McHenry, C. R. 2013. Embedding and publishing interactive, 3-dimensional, scientific figures in portable document format (PDF) Files. PLOS One, 8 (9):e69446.CrossRefGoogle ScholarPubMed
Bates, K. T., Falkingham, P. L., Hodgetts, D., Farlow, J. O., Breithaupt, B. H., O'Brien, M., Matthews, N., Sellers, W. I., and Manning, P. L. 2009. Digital imaging and public engagement in palaeontology. Geology Today, 25:134139.CrossRefGoogle Scholar
Betts, M. W., Maschner, H. D. G., Schou, C. D., Schlader, R., Holmes, J., Clement, N., and Smuin, M. 2011. Virtual zooarchaeology: building a web-based reference collection of northern vertebrates for archaeofaunal research and education. Journal of Archaeological Science, 38:755762.CrossRefGoogle Scholar
Boczarowski, A. 2005. Chromo-stereoscopy as a tool in micropalaeontological investigations: Echinoderms as a case study. Studia Geologica Polonica, 124:2135.Google Scholar
Briggs, D. E. G., Sutton, M. D., Siveter, D. J., and Siveter, D. J. 2004. A new phyllocarid (Crustacea: Malacostraca) from the Silurian Fossil-Lagerstätte of Herefordshire, U.K. Proceedings of the Royal Society of London, Series B, Biological Sciences, 271:131138.CrossRefGoogle Scholar
Briggs, D. E. G., Siveter, D. J., Siveter, D. J., Sutton, M. D., Garwood, R. J., and Legg, D. 2012. Silurian horseshoe crab illuminates the evolution of arthropod limbs. Proceedings of the National Academy of Sciences, 109:1570215705.CrossRefGoogle ScholarPubMed
Bristowe, A., Parrott, A., Hack, J., Pencharz, M., and Raath, M. 2004. A non-destructive investigation of the skull of the small theropod dinosaur, Coelophysis rhodesiensis, using CT scans and rapid prototyping. Palaeontologica Africana, 40:159163.Google Scholar
Bruns, E., Brombach, B., Zeidler, T., and Bimber, O. 2007. Enabling mobile phones to support large-scale museum guidance. IEEE MultiMedia, 14:1625.CrossRefGoogle Scholar
Case, E. C. 1922. New reptiles and stegocephalians from the Upper Triassic of western Texas. Carnegie Institution of Washington, Washington.Google Scholar
Case, E. C. 1928. An endocranial cast of a phytosaur from the upper Triassic beds of western Texas. The Journal of Comparative Neurology, 45:161168.CrossRefGoogle Scholar
Clark, J. M., Perle, A., and Norell, M. A. 1994. The skull of Erlicosaurus andrewsi, a Late Cretaceous “segnosaur” (Theropoda: Therizinosauridae) from Mongolia. American Museum Novitates, 3115:139.Google Scholar
Donoghue, P. C. J., Bengtson, S., Dong, X.-P., Gostling, N. J., Huldtgren, T., Cunningham, J. A., Yin, C., Yue, Z., Peng, F., and Stampanoni, M. 2006. Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442:680683.CrossRefGoogle ScholarPubMed
Düring, D. N., Ziegler, A., Thompson, C. K., Ziegler, A., Faber, C., Müller, J., Scharff, C., and Elemans, C. P. H. 2013. The songbird syrinx morphome: A three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ. BMC Biology, 11:127.CrossRefGoogle ScholarPubMed
D'urso, P. S., Thompson, R. G., and Earwaker, W. J. 2000. Stereolithographic (SL) biomodelling in palaeontology: A technical note. Rapid Prototyping Journal, 6:212215.CrossRefGoogle Scholar
Farke, A. A. and Sertich, J. J. W. 2013. An abelisauroid theropod dinosaur from the Turonian of Madagascar. PloS ONE, 8:e62047.CrossRefGoogle ScholarPubMed
Faulwetter, S., Vasileiadou, A., Kouratoras, M., Dailianis, T., and Arvanitidis, C. 2013. Micro-computed tomography: Introducing new dimensions to taxonomy. ZooKeys, 263:145.CrossRefGoogle Scholar
Flaig, B. and Parzeller, M. 2011. Der QR Code in Gesellschaft, Wirtschaft und Medizin – Anwendungsbeispiele, Möglichkeiten und Chancen. Archiv für Kriminologie, 227:112.Google Scholar
Frankel, F. 2004. The power of the ‘pretty picture’. Nature Materials, 3:417419.CrossRefGoogle ScholarPubMed
Garwood, R. J. and Dunlop, J. 2014. The walking dead: Blender as a tool for paleontologists. Journal of Paleontology, 88:735746.CrossRefGoogle Scholar
Gatesy, S. M., Shubin, N. H., and Jenkins, F. A. J. 2005. Anaglyph stereo imaging of dinosaur track morphology and microtopography. Palaeontologia Electronica, 8:110.Google Scholar
Haug, J. T., Haug, C., Maas, A., Fayers, S. R., Trewin, N. H., and Waloszek, D. 2009a. Simple 3D images from fossil and recent micromaterial using light microscopy. Journal of Microscopy, 233:93101.CrossRefGoogle ScholarPubMed
Haug, C., Haug, J. T., Waloszek, D., Maas, A., Frattigiani, R., and Liebau, S. 2009b. New methods to document fossils from lithographic limestones of Southern Germany and Lebanon. Palaeontologia Electronica, 12:112.Google Scholar
Haug, J. T., Waloszek, D., Haug, C., and Maas, A. 2010. High-level phylogenetic analysis using developmental sequences: The Cambrian Martinssonia elongata, Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Structure and Development, 39:154173.CrossRefGoogle ScholarPubMed
Hudson, G. H. 1913. The use of the stereogram in paleobiology. New York State Museum Bulletin, 164:103131.Google Scholar
Hudson, G. H. 1925. The need of improved technique in illustration. The Journal of Geology, 33:642657.CrossRefGoogle Scholar
Hutchinson, J. R., Anderson, F. C., Blemker, S. S., and Delp, S. L. 2005. Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed. Paleobiology, 31:676701.CrossRefGoogle Scholar
Janensch, W. 1935 –1936. Die Schädel der Sauropoden Brachiosaurus und Dicraeosaurus aus den Tendaguruschichten Deutsch-Ostafrikas. Palaeontographica, Supplement, 7:145298.Google Scholar
Jones, D., Evans, A. R., Siu, K. K. W., Rayfield, E. J., and Donoghue, P. C. J. 2012. The sharpest tools in the box? Quantitative analysis of conodont element functional morphology. Proceedings of the Royal Society B, Biological Sciences, 279:28492854.CrossRefGoogle ScholarPubMed
Jones, N. 2012. Science in three dimensions: The print revolution. Nature, 487:2223.CrossRefGoogle ScholarPubMed
Knappertsbusch, M. W. 2002. Stereographic virtual reality representations of microfossils in light microscopy. Palaeontologia Electronica, 5:111.Google Scholar
Knoll, F., and Rohrberg, K. 2012. CT scanning, rapid prototyping and re-examination of a partial skull of a basal crocodylomorph from the Late Triassic of Germany. Swiss Journal of Geosciences, 105:109115.CrossRefGoogle Scholar
Knoll, F., Witmer, L. M., Ortega, F., Ridgely, R. C., and Schwarz-Wings, D. 2012. The braincase of the basal sauropod dinosaur Spinophorosaurus and 3D reconstructions of the cranial endocast and inner ear. PLOS One, 7:e30060.CrossRefGoogle ScholarPubMed
Kumar, P., Ziegler, A., Grahn, A., Hee, C. S., and Ziegler, A. 2010. Leaving the structural ivory tower, assisted by interactive 3D PDF. Trends in Biochemical Sciences, 35:419422.CrossRefGoogle ScholarPubMed
Kumar, P., Ziegler, A., Ziegler, J., Uchanska-Ziegler, B., and Ziegler, A. 2008. Grasping molecular structures through publication-integrated 3D models. Trends in Biochemical Sciences, 33:408412.CrossRefGoogle Scholar
Lautenschlager, S. 2013. Cranial myology and bite force performance of Erlikosaurus andrewsi: a novel approach for digital muscle reconstructions. Journal of Anatomy, 222:260272.CrossRefGoogle ScholarPubMed
Lautenschlager, S. 2014. Palaeontology in the third dimension—a comprehensive guide for the integration of three-dimensional content in publications. Paläontologische Zeitschrift, 88:111121.CrossRefGoogle Scholar
Lautenschlager, S., Rayfield, E., Altangerel, P., Zanno, L. E., and Witmer, L. M. 2012. The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PloS ONE, 7:e52289.CrossRefGoogle ScholarPubMed
Lautenschlager, S. and Rücklin, M. 2012. Beyond the print—QR codes as a method to present 3D data. Geological Society of America, 2012 Annual Meeting, Charlotte, 44:442.Google Scholar
Maunsell, J. 2010. Announcement regarding supplemental material. Journal of Neuroscience, 30:1059910600.Google Scholar
Metallo, A. and Rossi, V. 2011. The future of three-dimensional imaging and museum applications. Curator, The Museum Journal, 54:6369.CrossRefGoogle Scholar
Mody, A., Akram, M., Rony, K., Aman, M. S., and Kamoua, R. 2009. Enhancing user experience at museums using smart phones with RFID, Systems. Applications and Technology Conference, 2009. LISAT '09. IEEE Long Island, p. 15.Google Scholar
Murienne, J., Ziegler, A., and Ruthensteiner, B. 2008. A 3D revolution in communicating science. Nature, 453:450.CrossRefGoogle ScholarPubMed
Ohbuchi, E., Hanaizumi, H., and Hock, L. A. 2004. Barcode readers using the camera device in mobile phones. Proceedings of IEEE 2004 International Conference on Cyberworlds, p. 260265.Google Scholar
Pierce, S. E., Clack, J. A., and Hutchinson, J. R. 2012. Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature, 486:523526.CrossRefGoogle ScholarPubMed
Purnell, M. A. 2003. Casting, replication, and anaglyph stereo imaging of microscopic detail in fossils, with examples from conodonts and other jawless vertebrates. Palaeontologia Electronica, 6:111.Google Scholar
Rahman, I. A., Adcock, K., and Garwood, R. J. 2012. Virtual fossils: A new resource for science communication in paleontology. Evolution: Education and Outreach, 5:635641.Google Scholar
Rauhut, O. W. M. and Fechner, R. 2005. Early development of the facial region in a non-avian theropod dinosaur. Proceedings of the Royal Society B, Biological Sciences, 272:11791183.CrossRefGoogle Scholar
Rayfield, E. 2007. Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Sciences, 35:541576.CrossRefGoogle Scholar
Romilio, A., Tucker, R. T., and Salisbury, S. W. 2013. Reevaluation of the Lark Quarry dinosaur Tracksite (late Albian–Cenomanian Winton Formation, central-western Queensland, Australia): No longer a stampede? Journal of Vertebrate Paleontology, 33:102120.CrossRefGoogle Scholar
Rowe, T. B. and Frank, L. R. 2011. The disappearing third dimension. Science, 331:712714.CrossRefGoogle ScholarPubMed
Ruthensteiner, B., Bäumler, N., and Barnes, D. G. 2010. Interactive 3D volume rendering in biomedical publications. Micron, 41:886.e881886.e817.Google Scholar
Rücklin, M., Giles, S., Janvier, P., and Donoghue, P. C. J. 2011. Teeth before jaws? Comparative analysis of the structure and development of the external and internal scales in the extinct jawless vertebrate Loganellia scotica. Evolution and Development, 13:523532.CrossRefGoogle ScholarPubMed
Rücklin, M., Donoghue, P. C. J., Johanson, Z., Trinajstic, K., Marone, F., and Stampanoni, M. 2012. Development of teeth and jaws in the earliest jawed vertebrates. Nature, 491:748751.CrossRefGoogle ScholarPubMed
Rücklin, M., Donoghue, P. C. J., Cunningham, J. A., Marone, F., and Stampanoni, M. 2014. Developmental paleobiology of the vertebrate skeleton. Journal of Paleontology, 88:676683.CrossRefGoogle ScholarPubMed
Sereno, P. C., Wilson, J. A., Witmer, L. M., Whitlock, J. A., Maga, A., Ide, O., and Rowe, T. A. 2007. Structural extremes in a Cretaceous dinosaur. PloS ONE, 2:e1230.CrossRefGoogle Scholar
Smith, S. Y., Collinson, M. E., Rudall, P. J., Simpson, D. A., Marone, F., and Stampanoni, M. 2009. Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proceedings of the National Academy of Sciences, 106:1201312018.CrossRefGoogle ScholarPubMed
Snelling, A. M., Zalasiewicz, J. A., and Reeds, I. 2010. Using X-ray images to analyse graptolite distribution and alignment in Welsh mudrocks. Proceedings of the Yorkshire Geological Society, 58:129140.CrossRefGoogle Scholar
Steinbach, L. 2011. 3D or not 3D? Is that a question? Curator, The Museum Journal, 54:4154.CrossRefGoogle Scholar
Symes, M. D., Kitson, P. J., Yan, J., Richmond, C. J., Cooper, G. J. T., Bowman, R. W., Vilbrandt, T., and Cronin, L. 2012. Integrated 3D-printed reactionware for chemical synthesis and analysis. Nature Chemistry, 4:349354.CrossRefGoogle ScholarPubMed
Tafforeau, P., Boistel, R., Boller, E., Bravin, A., Brunet, M., Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Jaeger, J. J., Kay, R. F., Lazzari, V., Marivaux, L., Nel, A., Nemoz, C., Thibault, X., Vignaud, P., and Zabler, S. 2006. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Applied Physics A, 83:195202.CrossRefGoogle Scholar
Teshima, Y., Matsuoka, A., Fujiyoshi, M., Ikegami, Y., Keneko, T., Oouchi, S., Watanabe, Y., and Yamazawa, K. 2010. Enlarged skeleton models of plankton for tactile teaching. Lecture Notes in Computer Science, 6180:523526.CrossRefGoogle Scholar
Torres, A. M., Christensen, A. M., Masters, T., and Ketcham, R. A. 2003. From CT scans of embedded Ivanovia to models using rapid prototyping. Palaeontology, 46:839843.CrossRefGoogle Scholar
Tyzack, J. K. 2008. Dragging (and zooming and rotating) publication of 3D molecular structures into the 21st century. Trends in Biochemical Sciences, 33:405407.CrossRefGoogle Scholar
Vasilyev, V. 2010. Towards interactive 3D graphics in chemistry publications. Theoretical Chemistry Accounts, 125:173176.CrossRefGoogle Scholar
Witmer, L. M., Ridgely, R. C., Dufeau, D. L., and Semones, M. C. 2008. Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs, p. 6787. InEndo, H. and Frey, R.(eds.), Anatomical Imaging-Towards a New Morphology. Springer, Tokyo.CrossRefGoogle Scholar
Ziegler, A., Faber, C., Mueller, S., and Bartolomaeus, T. 2008. Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging. BMC Biology, 6:115.CrossRefGoogle ScholarPubMed
Ziegler, A., Mietchen, D., Faber, C., Von Hausen, W., Schobel, C., Sellerer, M., and Ziegler, A. 2011. Effectively incorporating selected multimedia content into medical publications. BMC Medicine, 9:17.CrossRefGoogle ScholarPubMed