Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T21:18:56.092Z Has data issue: false hasContentIssue false

Early Ordovician ostracods from Argentina: their bearing on the origin of binodicope and palaeocope clades

Published online by Cambridge University Press:  14 July 2015

María José Salas
Affiliation:
Centro de Investigaciones Paleobiológicas CIPAL, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Vélez Sarsfield 299, 5000 Córdoba, Argentina, 〈mjsalas@com.uncor.edu〉
Jean Vannier
Affiliation:
Université Claude Bernard Lyon 1, UFR des Sciences de la Terre, UMR 5125 PEPS Paleoenvironnements & Paleobiosphere, GEODE—2, rue Raphael Dubois, 69622 Villeurbanne cedex, France, 〈jean.vannier@univ-lyonl.fr〉
Mark Williams
Affiliation:
School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO1 3QL, United Kingdom, 〈mark.williams@port.ac.uk〉

Abstract

New species of ostracods are described from the Tremadoc of the Cordillera Oriental (Argentina). These are among the earliest well-documented records of Ostracoda sensu stricto. The ostracod assemblages are sourced from shallow marine clastics and are dominated by palaeocopes (Eopilla waisfeldae n. sp., Nanopsis coquena n. sp.), and the binodicope Kimsella luciae n. gen. and sp. Eopilla and Kimsella show affinities with species from paleocontinental Gondwana (e.g., Ibero-Armorica, Turkey, Australia, Carnic Alps), but Nanopsis is previously known only from paleocontinental Baltica. This study confirms that two of the major clades of Ordovician ostracods, namely the Binodicopa and the Palaeocopa, were already geographically widespread during the late Tremadoc, suggesting a still earlier origin for these groups, possibly from within the Cambrian to Early Ordovician Bradoriida. Evidence from soft-part anatomy indicates that phosphatocopids, the other group hypothesized to be ancestral ostracods, have apomorphies that preclude them as direct ancestors. The origin of ostracods is more likely to be found within the Bradoriida, a probable polyphyletic group that resembles Early Ordovician ostracods in the external sculpture of their bivalved carapace. Evidence from carapace morphology suggests that the ancestors of true ostracods might lie within the bradoriid groups Beyrichonidae and Hipponicharionidae, a hypothesis that can only truly be tested when more evidence from fossilized soft tissues becomes available.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K. and Vannier, J. 1995. Functional morphology and significance of the circulatory system of Ostracoda, exemplified by Vargula hilgendorfii (Myodocopida). Marine Biology, 124:5158.CrossRefGoogle Scholar
Albanesi, G. L., Ortiga, G., and Zeballos, F. 2001. Late Tremadocian conodont-graptolite biostratigraphy from NW Argentine basin. The Guide Book, Joint Field Meeting IGCP410/IGCP421 in Mongolia, Ulaanbaatar, p. 121123.Google Scholar
Astini, R. A. 2002. La “megacapa” Parcha (Ordovícico temprano de la Cordillera Oriental): Sismita, regresión forzada o evento extraordinario?. Abstracts Reunión Argentina de Sedimentología, Córdoba: 48.Google Scholar
Astini, R. A. 2003. The Ordovician Proto-Andean basin, p. 174. In Benedetto, J. L. (ed.), Ordovician Fossils of Argentina. Secretaría de Ciencia y Tecnología, Universidad Nacional de Córdoba.Google Scholar
Bahlburg, H. 1990. The Ordovician basin in the Puna of NW Argentina and N Chile: Geodynamic evolution from back-arc to forland basin. Geotektonische Forschungen, 75:1107.Google Scholar
Bahlburg, H. 1991. The Ordovician back-arc to foreland successor basin in the Argentinian-Chilean Puna: Tectono-Sedimentary trends and sea-levels changes, p. 465484. In Macdonald, D. (ed.), Sedimentation, Tectonics and Eustasy: Processes and Products. Special Publication International Association of Sedimentologist, Blackwell Scientific Publications, 1.CrossRefGoogle Scholar
Bahlburg, H. and Furlong, K. P. 1996. Lithospheric modeling of the Ordovician foreland basin in the Puna-NW Argentina: On the influence of arc loading on foreland basin formation. Tectonophysics, 259:245258.CrossRefGoogle Scholar
Benedetto, J. L. and Carrasco, P. A. 2002. Tremadoc (earliest Ordovician) brachiopods from Purmamarca and Sierra de Mojotoro, Cordillera Oriental of northwestern Argentina. Geobios, 35:647661.CrossRefGoogle Scholar
Braddy, S. J., Tollerton, V. P., Racheboeuf, P. R., and Schallreuter, R. E. L. 2004. Eurypterids, phyllocarids, and ostracodes, p. 255265. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.CrossRefGoogle Scholar
Harrington, H. J. 1938. Sobre las faunas del Ordoviciano inferior del norte argentino. Revista del Museo de La Plata (nueva serie) 1, Sección Paleontología, 4:109289.Google Scholar
Harrington, H. J. and Leanza, A. F. 1957. Ordovician trilobites of Argentina. University of Kansas Special Publication, 1, 276 p.Google Scholar
Henningsmoen, G. 1953. Classification of Paleozoic straight-hinge ostracods. Norske Geologische Tidsskrift, 31:185288.Google Scholar
Henningsmoen, G. 1954. Lower Ordovician Ostracods from the Oslo Region, Norway. Norsk Geologisk Tidsskrift, 33:4168.Google Scholar
Hornibrook, N. de B. 1949. A new family of living Ostracoda with striking resemblances to some Palaeozoic Beyrichiidae. Transactions of the Royal Society of New Zealand, 77:469471.Google Scholar
Hou, X., Siveter, D. J., Williams, M., and Feng, X.-H. 2001. Bradoriid arthropods from the lower Cambrian of southwest China. Transactions of the Royal Society of Edimburgh: Earth Science, 92:347409.Google Scholar
Hou, X., Siveter, D. J., Williams, M., Walossek, D., and Bergström, J. 1996. Preserved appendages in the arthropod Kunmingella from the early Cambrian of China: Its bearing on the systematic position of the Bradoriida and the fossil record of the Ostracoda. Philosophical Transactions of the Royal Society of London, B, 351:11311145.Google Scholar
Hou, X., Aldridge, R. J., Bergström, I., Siveter, David J., Siveter, Derek J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Blackwell Publishing, Oxford, 233 p.Google Scholar
Hou, Y. T. 1953a. Some lower Ordovician ostracods from western Hupeh. Acta Paleontologica Sinica, 1:7579.Google Scholar
Hou, Y. T. 1953b. Some Tremadocian ostracods from Taitzeho Valley, Liaotung. Acta Paleontológica Sínica, 1:4050.Google Scholar
Jaanusson, V. 1957. Middle Ordovician ostracodes of central and southern Sweden. Geological Institution of the University of Uppsala Bulletin, 37:176442.Google Scholar
Kanygin, A. V. 1967. Ostrakody Ordovika Gonroj Sistemy Cerskogo. Moscow (Nauka), 154 p.Google Scholar
Maas, A., Walossek, D., and Müller, K. J. 2003. Morphology, ontogeny and phylogeny of the Phosphatocopina (Crustacea) from the Upper Cambrian “Orsten” of Sweden. Fossils and Strata, 49:1238.CrossRefGoogle Scholar
Matthew, G. F. 1886. Illustration of the fauna of the St. John Group continued. N° 3. Description of the new genera and species. Proceedings and Transactions of the Royal Society of Canada, series 1, 3:2984.Google Scholar
Matthew, G. F. 1903. Report on the Cambrian Rocks of Cape Breton. Geological Survey of Canada, 246 p.CrossRefGoogle Scholar
Moberg, J. C. and Segerberg, C. O. 1906. Bidrag till kännedomen om Ceratopy-geregionen. Meddelande fran Lunds Geologiska Fältklubb, B, 2, 116 p.Google Scholar
Moya, M. C. 1998. El Paleozoico inferior en la Sierra de Mojotoro, Salta-Jujuy. Revista de la Asociación Geológica Argentina, 52:219238.Google Scholar
Öpik, A. A. 1935. Ostracoda from the lower Ordovician Megalaspis-limestone of Estonia and Russia. Tartu ülikooli j. o. loodusuurijate seltsi aruanded, Annales societatis rebus naturae investigandis in universitate Tartu constitutae, 42:2838.Google Scholar
Ortega, G. and Albanesi, G. L. 2002. Bioestratigrafía de graptolitos y conodontes del Tremadociano tardío de la Cordillera Oriental Argentina. 15 Congreso Geológica Argentino, El Calafate, 1:542547.Google Scholar
Ortega, G. and Albanesi, G. L. 2003. Late Tremadocian graptolite and conodonts from the Parcha area, Eastern Cordillera, Argentina, p. 7985. In Ortega, G. and Aceñolaza, G. F. (eds.), Proceedings 7th IGC-FMSSS. INSUGEO, Serie de Correlación Geológica, 18.Google Scholar
Pinto, I. and Purper, I. 1981. New Lower Paleozoic ostracodes from Bolivia. Anais do II Congresso Latino-americano de Paleontologia, Porto Alegre, 1:4557.Google Scholar
Pokorny, V. 1953. A contribution to the taxonomy of the Paleozoic ostracods. Sborník Ústredního Ustavu Geologického, 20:213232.Google Scholar
Rossi De García, E. and Proserpio, C. 1976. Ostrácodos Ordovícicos de la Sierra de San Bernardo. 6° Congreso Geológico Argentino, Actas 1:557563.Google Scholar
Salas, M. J. and Albanesi, G. L. 2003. Primer registro de ostrácodos tremadocianos (Ordovícico temprano) en Sudamérica. Abstracts Reunion Anual de Comunicaciones de la Asociación Paleontológica Argentina, La Pampa. Ameghiniana, Suplemento resúmenes, 40(4):92R.Google Scholar
Sánchez, T. M. and Vaccari, N. E. 2003. Ucumariidae new family (Bivalvia, Anomalodesmata) and other bivalves from the Early Ordovician (Tremadocian) of northwestern Argentina. Ameghiniana, 40(3):415424.Google Scholar
Schallreuter, R. E. L. 1968. Drepanellacea (Ostracoda, Beyrichiida) aus mittelordovizischen Backsteinkalkgeschieben II. Laterophores lateris g. n. sp. n., Pseudulrichia bucera und Pedomphalella egregia (Neckaja). Berichte der deutschen Gesellschaft für geologische Wissenschaften Reihe A (Geologie und Paläontologie), 13:247261.Google Scholar
Schallreuter, R. E. L. 1972. Drepanellacea (Ostracoda, Beyrichiida) aus mittelordovizischen Backsteinkalkgeschieben IV. Laterophores hystrix sp. n., Pedomphalella germanica sp. n. und Easchmidtella fragosa (Neckaja). Berichte der deutschen Gesellschaft für geologische Wissenschaften Reihe A (Geologie und Paläontologie), 17:139145.Google Scholar
Schallreuter, R. E. L. 1990. Ordovizische Ostrakoden und Seeigel der Karnischen Alpen und ihre Beziehungen zu Böhmen und Baltoskandien. Neues Jahrbuch für Geologie und Paläontologie Monathefte, 2:120128.CrossRefGoogle Scholar
Schallreuter, R. E. L. 1993a. On Eopilla ingelorae Schallreuter gen. et. sp. nov. Stereo-Atlas of Ostracod Shells, 20(28):117120.Google Scholar
Schallreuter, R. E. L. 1993b. On Eodominina nuela Schallreuter gen. et. sp. nov. Stereo-Atlas of Ostracod Shells, 20(29):121124.Google Scholar
Schallreuter, R. E. L. 1995a. On Ansipe aseripediculus Schallreuter gen. et sp. nov. Stereo-Atlas of Ostracod Shells, 22(19):7881.Google Scholar
Schallreuter, R. E. L. 1995b. On Harpabollia argentina Schallreuter sp. nov. Stereo-Atlas of Ostracod Shells, 22(20):8285.Google Scholar
Schmidt, E. A. 1941. Studien im böhmischen Caradoc (Zahořan-Stufe). I. Ostrakoden aus den Bohdalecschichten und über die Taxonomie der Beyrichiacea. Senckenberg Naturforschenden Gesellschaft, 454, 96 p.Google Scholar
Shu, D. 1990. Cambrian and Lower Ordovician Bradoriida from Zhejiang, Hunan and Shaanxi Provinces. Northwest University Press, Xian, 95 p.Google Scholar
Shu, D.-G., Vannier, J., Luo, H.-L., Chen, L., Zhang, X.-L., and Hu, S.-X. 1999. The anatomy and lifestyle of Kunmingella (Arthropoda,-Bradoriida) from the Chengjiang fossil Lagerstätte (early Cambrian; southern China). Lethaia, 42:279298.CrossRefGoogle Scholar
Siveter, D. J. and Williams, M. 1997. Cambrian bradoriid and phosphatocopid arthropods of North America. Special Papers in Paleontology, 57:169.Google Scholar
Siveter, D. J., Williams, M., and Walossek, D. 2001. A phosphatocopid crustacean with appendages from the Lower Cambrian. Science, 293:479481.CrossRefGoogle ScholarPubMed
Siveter, David J., Sutton, M. D., Briggs, D. E. G., and Siveter, Derek J. 2004. An ostracod crustacean with soft parts from the Lower Silurian. Science, 300:17491751.Google Scholar
Stubblefield, C. J. 1933. Notes on the fossils, p. 357375. In Smith, S. (ed.), On the occurrence of Tremadoc Shales in the Tortworth Inlier (Gloucestershire). Quarterly Journal of the Geological Society, London, 89.Google Scholar
Swanson, K. M. 1989. Manawa staceyi n. sp. (Punciidae, Ostracodea): Soft anatomy and ontogeny. Courier Forschungsinstitut Senckenberg, 113:235249.Google Scholar
Swartz, F. M. 1936. Revision of the Primitiidae and Beyrichiidae with new Ostracoda from the Lower Devonian of Pennsylvania. Journal of Paleontology, 10:541586.Google Scholar
Tinn, O. and Meidla, T. 2004. Phylogenetic relationships of Early Middle Ordovician ostracods of Baltoscandia. Palaeontology, 47:199221.CrossRefGoogle Scholar
Tortello, M. F. and Rao, R. I. 2000. Trilobites y conodontes del Ordovícico temprano del Angosto de Lampazar (provincia de Salta, Argentina). Boletín Geológico y Minero, ITGM España, 111:6184.Google Scholar
Vannier, J. 1983. Rivillina, a new ostracode (Bradoriida?) genus from the Armorican Massif, France. Alcheringa, 7:18.CrossRefGoogle Scholar
Vannier, J. 1984. On Thibautina rorei Vannier. Stereo-Atlas of Ostracod Shells, 11:119122.Google Scholar
Vannier, J. 1986. Ostracodes Binodicopa de l'Ordovicien (Arenig-Caradoc) Ibero-armoricain. Palaeontographica A, 193:77143.Google Scholar
Vannier, J. and Abe, K. 1995. Size body plan and respiration in the Ostracoda. Paleontology, 38:843874.Google Scholar
Vannier, J. and Chen, J. 2005. Early Cambrian food chain: New evidence from fossil aggregates in the Maotianshan Shale Biota, SW China. Palaios, 20:326.CrossRefGoogle Scholar
Vannier, J., Abe, K., and Ikuta, K. 1998. Feeding in myodocopid ostracods: Functional morphology and laboratory observations from videos. Marine Biology, 132:391408.CrossRefGoogle Scholar
Vannier, J., Racheboeuf, P., and Benedetto, L. 1995. Silurian-Early Devonian Ostracods from South America (Argentina, Bolivia): Preliminary investigations. Journal of Paleontology, 69:752771.CrossRefGoogle Scholar
Vannier, J., Williams, M., and Siveter, D. J. 1997. The Cambrian ancestry of circulation in crustaceans. Lethaia, 30:169184.CrossRefGoogle Scholar
Williams, M. and Siveter, D. J. 1998. British Cambrian and Tremadoc bradoriid and phosphatocopid arthropods. Monograph of the Palaeontographical Society of London, 152, 49 p.Google Scholar
Zeballo, F. J. and Tortello, M. F. 2005. Trilobites del Cámbrico tardío-Ordovícico temprano del área de Alfarcito, Tilcara, Cordillera Oriental de Jujuy, Argentina. Ameghiniana, 42(1):127142.Google Scholar
Zeballo, F. J., Albanesi, G. L., Ortega, G., and Tortello, M. F. 2003. Biostratigraphy of Ordovician sequences from Alfarcito area, Tilcara, Eastern Cordillera of Jujuy, Argentina, p. 167171. In Albanesi, G. L., Beresi, M. S., and Peralta, S. H. (eds.), Ordovician from the Andes. INSUGEO, Serie de Correlación Geológica, 17.Google Scholar
Zhang, X.-L., Shu, D.-G., Li, Y., and Han, J. 2001. New sites of Chengjiang fossils: Crucial windows on the Cambrian explosion. Journal of the Geological Society of London, 158:211218.CrossRefGoogle Scholar