Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:59:43.968Z Has data issue: false hasContentIssue false

Morphology, ontogeny, and phylogenetics of the genus Poseidonamicus (Ostracoda: Thaerocytherinae)

Published online by Cambridge University Press:  14 July 2015

Gene Hunt*
Affiliation:
Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012.

Abstract

The ostracode genus Poseidonamicus has been widespread and abundant in deep-sea sediments since the Eocene. Despite its prominent role in a number of evolutionary studies, species identification in this genus is often difficult and phylogenetic relationships among its species are not well understood. Here I present the findings from a comprehensive study of this genus with the purpose of discovering novel phylogenetic characters and clarifying species relationships. I briefly describe the adult carapace and trace some of the major morphological changes that occur over the last several instars. I focus particular attention on the arrangement of fossae in the reticulate mesh; these features have been shown in other ostracodes to correspond to underlying epidermal cells. I describe the development of fossae in the region posterior to the adductor muscle scars, and hypothesize a sequence of specific cell divisions to account for the addition of fossae over ontogeny.

Phylogenetic characters were derived from many different types of characters, including aspects of carapace shape, the presence and location of pores, characteristics of specific ridges and spines, and the relative position of homologous fossae in the reticulum. A parsimony analysis of 42 characters and 40 operational taxonomic units (36 ingroup and four outgroup) resulted in a set of optimal trees whose strict consensus is relatively well resolved, well supported, and generally consistent with the order in which taxa appear in the fossil record. the monophyly of Poseidonamicus is supported, as is the monophyly of all deep-sea members of this genus. Within the clade of deep-sea Poseidonamicus, several subgroups are recovered with varying levels of character support. in addition to providing a general framework for understanding morphological evolution in this genus, the results of this phylogenetic analysis have two specific implications for the evolution of sightedness in this genus. First, because Poseidonamicus ocularis is nested deeply within a clade of entirely deep-sea species, its putatively ocular features are probably not related to vision. Second, there has likely been just a single transition from sighted to blind in Poseidonamicus, coincident with its colonization of the deep sea. No support is found for the recent suggestion that sighted shallow-water dwelling Poseidonamicus species may have evolved from blind deep-sea ancestors, although data from additional taxa will be necessary to test this hypothesis more fully.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antsey, R. L., and Pachut, J. F. 2004. Cladistic and phenetic recognition of species in the Ordovician bryozoan genus Peronopora. Journal of Paleontology, 78(4):651674.Google Scholar
Apostolescu, V. 1961. Contribution a l'étude paléontologique (Ostracodes) et stratigraphique crétacés et tertiares de l'Afrique Occidentale. Revue de l'Institut Français de Pétrole et Annales des Combustibles Liquides, 16(7-8):779867.Google Scholar
Ayress, M. A. 1994. Cainozoic palaeoceanographic and subsidence history of the eastern margin of the Tasman Basin based on Ostracoda, p. 139157. In van der Lingen, G. J., Swanson, K. M., and Muir, R. J. (eds.), Evolution of the Tasman Sea Basin. A. A. Balkema Publishers, Rotterdam, Netherlands.Google Scholar
Ayress, M. A., Neil, H., Passlow, V., and Swanson, K. 1997. Benthonic ostracods and deep watermasses: A qualitative comparison of Southwest Pacific, Southern and Atlantic oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 131:287302.CrossRefGoogle Scholar
Bate, R. H. 1972. Upper Cretaceous Ostracoda from the Carnarvon Basin, western Australia. Special Papers in Palaeontology, 10, 148 p.Google Scholar
Benson, R. H. 1972. The Bradleya problem, with descriptions of two new psychrospheric ostracode genera, Agrenocythere and Poseidonamicus (Ostracoda: Crustacea). Smithsonian Contributions to Paleobiology, 12, 138 p.Google Scholar
Benson, R. H. 1983. Biomechanical stability and sudden change in the evolution of the deep-sea ostracode Poseidonamicus. Paleobiology, 9(4):398413.CrossRefGoogle Scholar
Benson, R. H., and Peypouquet, J.-P. 1983. The upper and mid-bathyal Cenozoic ostracode faunas of the Rio Grande Rise found on Leg 72 Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project, 72:805818.Google Scholar
Berggren, W. A., Hilgen, F. J., Langereis, C. G., Kent, D. V., Obradovich, J. D., Raffi, I., Raymo, M. E., and Shackleton, N. J. 1995a. Late Neogene chronology: New perspectives in high-resolution stratigraphy. Geological Society of America Bulletin, 107(11):12721287.2.3.CO;2>CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. I., and Aubrey, M.-P. 1995b. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., Aubrey, M.-P., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. Vol. 54. Society for Sedimentary Geology, Tulsa, Oklahoma.Google Scholar
Boomer, I. 1999. Late Cretaceous and Cainozoic bathyal Ostracoda from the Central Pacific (DSDP Site 463). Marine Micropaleontology, 37(2):131147.CrossRefGoogle Scholar
Braccini, E., Peypouquet, J. P., and Benson, R. H. 1992. Quantization test of the evolution trend of Paleocosta pervinquieri (ostracode) during a 10-million period (Djebel-Dyr section, Paleogene, Algeria). Biosystems, 28:153167.CrossRefGoogle ScholarPubMed
Brady, G. S. 1865. On new or imperfectly known species of marine Ostracoda. Transactions of the Zoological Society of London, 5:359393.CrossRefGoogle Scholar
Brady, G. S. 1880. Report on the Ostracoda dredged by the H.M.S. Challenger during the years 1873-1876. Reports of the Voyage of the H.M.S. Challenger, Zoology, 1, 184 p.Google Scholar
Bremer, K. 1988. The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42(4):795803.CrossRefGoogle ScholarPubMed
Chaplin, J. A., Havel, J. E., and Hebert, P. D. N. 1994. Sex and ostracodes. Trends in Ecology and Evolution, 9(11):435439.CrossRefGoogle Scholar
Cohen, A. C., and Morin, J. G. 1990. Patterns of reproduction in ostracodes: A review. Journal of Crustacean Biology, 10(2):184211.CrossRefGoogle Scholar
Coles, G., and Whatley, R. C. 1989. New Paleocene to Miocene genera and species of Ostracoda from DSDP sites in the North Atlantic. Revista Española de Micropaleontología, 21(1):81124.Google Scholar
Collin, R., and Cipriani, R. 2003. Dollo's law and the re-evolution of shell coiling. Proceedings of the Royal Society of London, series B, 270:25512555.CrossRefGoogle ScholarPubMed
Cronin, T. M., DeMartino, D. M., Dwyer, G. S., and Rodriguez-Lazaro, J. 1999. Deep-sea ostracode species diversity: Response to late Quaternary climate change. Marine Micropaleontology, 37:231249.CrossRefGoogle Scholar
Dingle, R. V. 2002. Insular endemism in Recent Southern Ocean benthic Ostracoda from Marion Island: Palaeozoogeographical and evolutionary implications. Revista Española de Micropaleontología, 34(2):215233.Google Scholar
Dingle, R. V. 2003a. Recent subantarctic benthic ostracod faunas from the Marion and Prince Edward Islands archipelago, Southern Ocean. Revista Española de Micropaleontología, 35(1):119155.Google Scholar
Dingle, R. V. 2003b. Some palaeontological implications of putative, longterm, gene reactivation. Journal of the Geological Society, London, 160:815818.CrossRefGoogle Scholar
Donoghue, M. J. 1985. A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist, 88(3):172181.CrossRefGoogle Scholar
Good, D. A. 1988. Phylogenetic relationships among Gerrhonotine lizards. An analysis of external morphology. University of California Publications in Zoology, 121, 139 p.Google Scholar
Gould, S. J., and Robinson, B. A. 1994. The promotion and prevention of recoiling in a maximally snaillike vermetide gastropod—a case-study for the centenary of Dollo's Law. Paleobiology, 20(3):368390.CrossRefGoogle Scholar
Hanai, T., and Ikeya, N. 1991. Two new genera from the Omma-Manganji ostracode fauna (Plio–Pleistocene) of Japan—With a discussion of theoretical versus purely descriptive ostracode nomenclature. Transactions and Proceedings of the Palaeontological Society of Japan, n.s. 163:861878.Google Scholar
Hartmann, G., and Puri, H. S. 1974. Summary of neontological and paleontological classification of Ostracoda. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 70:773.Google Scholar
Hauser, D. L., and Presch, W. 1991. The effect of ordered characters on phylogenetic reconstruction. Cladistics, 7:243265.CrossRefGoogle ScholarPubMed
Hornibrook, N. 1952. Tertiary and Recent marine Ostracoda of New Zealand. Palaeontological Bulletin of the New Zealand Geological Survey, 18:582.Google Scholar
Hunt, G., and Chapman, R. E. 2001. Evaluating hypotheses of instar-groupings in arthropods: A maximum likelihood approach. Paleobiology, 27(3):466484.2.0.CO;2>CrossRefGoogle Scholar
Irizuki, T. 1993. Morphology and taxonomy of some Japanese hemicytherine Ostracoda with particular reference to ontogenetic changes of marginal pores. Transactions and Proceedings of the Palaeontological Society of Japan, n.s. 170:186211.Google Scholar
Irizuki, T. 1994. Quantitative analysis of ontogenetic changes of cell-reflecting sculptures in Ostracoda (Crustacea). Journal of Paleontology, 68(5):10671073.CrossRefGoogle Scholar
Irizuki, T. 1996. Ontogenetic change in valve characters in three new species of Baffinicythere (Ostracoda, Crustacea) from northern Japan. Journal of Paleontology, 70(3):450462.CrossRefGoogle Scholar
Jellinek, T., and Swanson, K. M. 2003. Report on the taxonomy, biogeography and phylogeny of mostly living benthic Ostracoda (Crustacea) from deep-sea samples (Intermediate Water depths) from the Challenger Plateau (Tasman Sea) and Campbell Plateau (Southern Ocean), New Zealand. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 558, 329 p.Google Scholar
Kamiya, T., and Hazel, J. E. 1992. Shared versus derived characters in the pore-system of Loxoconcha (Ostracoda, Crustacea). Journal of Micropalaeontology, 11(2):159166.CrossRefGoogle Scholar
Kontrovitz, M., and Yuhong, Z. 1991. Stereoscopic study of the ocular sinuses of some Ostracoda. Revista Española de Micropaleontología, 23(1):2735.Google Scholar
Liebau, A. 1971. Homologous Sculpture Patterns in Trachyleberididae and Related Ostracodes. Nolit Publishing House, Belgrade, 93 p.Google Scholar
Liebau, A. 1975. Comment on suprageneric taxa of the Trachyleberididae s.n. (Ostracoda, Cytheracaea). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 148(3):353379.Google Scholar
Liebau, A. 1991. Skulptur-Evolution bei Ostrakoden am Beispiel europäischer “Quadracytheren.” Geologie und Paläontologie in Westfalen, 13:1395.Google Scholar
Lipscomb, D. 1992. Parsimony, homology and the analysis of multistate characters. Cladistics, 8:4565.CrossRefGoogle ScholarPubMed
Maddocks, R. F. 1992. Ostracoda, p. 415441. In Harrison, F. W. and Humes, A. G. (eds.), Crustacea. Vol. 9. Wiley-Liss, New York.Google Scholar
Marshall, C. R., Raff, E. C., and Raff, R. 1994. Dollo's law and the death and resurrection of genes. Proceedings of the National Academy of Sciences USA, 91:1228312287.CrossRefGoogle ScholarPubMed
Mazzini, I. 2005. Taxonomy, biogeography and ecology of Quaternary benthic Ostracoda (Crustacea) from circumpolar deep water of the Emerald Basin (Southern Ocean) and the S Tasman Rise (Tasman Sea). Senckenbergiana Maritima, 35(1):1119.CrossRefGoogle Scholar
Mickevich, M. F., and Johnson, M. S. 1976. Congruence between morphological and allozyme data in evolutionary inference and character evolution. Systematic Zoology, 25:260270.CrossRefGoogle Scholar
Miyamoto, M. M. 1981. Congruence among character sets in phylogenetic studies of the frog genus Leptodactylus. Systematïc Zoology, 30(3):281290.CrossRefGoogle Scholar
Oakley, T. H., and Cunningham, C. W. 2002. Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye. Proceedings of the National Academy of Sciences USA, 99(3):14261430.CrossRefGoogle ScholarPubMed
Okada, Y. 1981. Development of cell arrangement in ostracod carapaces. Paleobiology, 7(2):276280.CrossRefGoogle Scholar
Okada, Y. 1982a. Structure and cuticle formation of the reticulated carapace of the ostracode Bicornucythere bisanensis. Lethaia, 15:85101.CrossRefGoogle Scholar
Okada, Y. 1982b. Ultrastructure and pattern of the carapace of Bicornucythere bisanensis (Ostracoda, Crustacea), p. 229267. In Hanai, T. (ed.), Studies on Japanese Ostracoda. University of Tokyo Press, Tokyo.Google Scholar
Okubo, I. 1975. Callistocythere pumila Hanai, 1957 and Leguminocythereis bisanensis sp. nov. in the Inland Sea, Japan (Ostracoda). Proceedings of the Japanese Society of Systematic Zoology, 11:2331.Google Scholar
Park, L. E., Martens, K., and Cohen, A. S. 2002. Phylogenetic relationships of Gomphocythere (Ostracoda) in Lake Tanganyika, East Africa. Journal of Crustacean Biology, 22(1):1527.CrossRefGoogle Scholar
Reyment, R. A. 1963. Studies on Nigerian Upper Cretaceous and Lower Tertiary Ostracoda, Pt. 2, Danian, Paleocene, and Eocene Ostracoda. Stockholm Contributions in Geology, 10:1287.Google Scholar
Rosenfeld, A. 1982. Distribution patterns and development of sieve-pores in two Recent ostracode species. Micropaleontology, 28(4):372380.CrossRefGoogle Scholar
Slowinski, J. B. 1993. “Unordered” versus “ordered” characters. Systematic Biology, 42(2):155165.CrossRefGoogle Scholar
Smith, A. 1994. Systematics and the Fossil Record. Blackwell Scientific, Oxford, 223 p.CrossRefGoogle Scholar
Smith, E. N., and Gutberlet, R. L. 2001. Generalized frequency coding: A method of preparing polymorphic multistate characters for phylogenetic analysis. Systematic Biology, 50:156169.CrossRefGoogle ScholarPubMed
Steineck, P. L., Dehler, D., Hoose, E. M., and McCalla, D. 1988. Oligocene to Quaternary ostracods of the central equatorial Pacific (Leg 85, DSDP-IPOD), p. 597618. In Hanai, T., Ikeya, N., and Ishizaki, K. (eds.), Evolutionary Biology of Ostracoda. Elsevier, Kodansha, Japan.Google Scholar
Swiderski, D. L., Zelditch, M. L., and Fink, W. L. 1998. Why morphometrics is not special: Coding quantitative data for phylogenetic analysis. Systematic Biology, 47(3):508519.Google Scholar
Swofford, D. L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Swofford, D. L., and Berlocher, S. H. 1987. Inferring evolutionary trees from gene frequency data under the principle of maximum parsimony. Systematic Zoology, 36:293325.CrossRefGoogle Scholar
Sylvester-Bradley, P. C., and Benson, R. 1971. Terminology for surface features in ornate ostracodes. Lethaia, 4:249286.CrossRefGoogle Scholar
Trueman, J. W. H., Pfeil, B. E., Kelchner, S. A., and Yeates, D. K. 2004. Did stick insects really regain their wings? Systematic Entomology, 29:138139.CrossRefGoogle Scholar
Tsukagoshi, A. 1990. Ontogenetic change of distributional patterns of pore systems in Cythere species and its phylogenetic significance. Lethaia, 23:225241.CrossRefGoogle Scholar
van den Bold, W. A. 1946. Contributions to the Study of Ostracoda with Special Reference to the Tertiary and Cretaceous of the Caribbean Region. J. H. deBussy, Amsterdam, 167 p.Google Scholar
van Morkhoven, F. P. C. M. 1962. Post-Paleozoic Ostracoda. Vol. 1. Elsevier, Amsterdam, 204 p.Google Scholar
Whatley, R. C. 1985. Evolution of the ostracods Bradleya and Poseidonamicus in the deep-sea Cainozoic of the south-west Pacific. Special Papers in Palaeontology, 33:103116.Google Scholar
Whatley, R. C., and Dingle, R. V. 1989. First record of an extant, sighted, shallow-water species of the genus Poseidonamicus Benson (Ostracoda) from the continental margin of south-western Africa. Annals of the South African Museum, 98(11):437457.Google Scholar
Whatley, R. C., Downing, S. E., Kesler, K., and Harlow, C. J. 1986. The ostracode genus Poseidonamicus from the Cainozoic of the D.S.D.P. sites in the S.W. Pacific. Revista Española de Micropaleontología, 18(3):387400.Google Scholar
Whatley, R. C., Harlow, C. J., Downing, S. E., and Kesler, K. J. 1983. Observations on the origin, evolution, dispersion and ecology of the genera Poseidonamicus (Benson) and Bradleya (Hornibrook), p. 492509. In Maddocks, R. F. (ed.), Applications of Ostracoda. Department of Geosciences, University of Houston.Google Scholar
Whatley, R. C., Moguilevsky, A., Ramos, M. I. F., and Coxill, D. J. 1998. Recent deep and shallow water Ostracoda from the Antarctic Peninsula and the Scotia Sea. Revista Española de Micropaleontología, 30(3):111135.Google Scholar
Whiting, M. F., and Whiting, A. S. 2004. Is wing recurrence really impossible?: A reply to Trueman et al. Systematic Entomology, 29:140141.CrossRefGoogle Scholar
Whiting, M. F., Bradler, S., and Maxwell, T. 2003. Loss and recovery of wings in stick insects. Nature, 421(6920):264267.CrossRefGoogle ScholarPubMed
Wiens, J. J. 1995. Polymorphic characters in phylogenetic systematics. Systematic Biology, 44(4):482500.CrossRefGoogle Scholar
Wiens, J. J. 1998. Testing phylogenetic methods with tree congruence: Phylogenetic analysis of polymorphic characters in phrynosomatid lizards. Systematic Biology, 47(3):427444.CrossRefGoogle Scholar
Wiens, J. J. 1999. Polymorphism in systematics and comparative biology. Annual Review of Ecology and Systematics, 30:327362.CrossRefGoogle Scholar
Wiens, J. J. 2000. Coding morphological variation within species and higher taxa for phylogenetic analysis, p. 115145. In Wiens, J. J. (ed.), Phylogenetic Analysis of Morphological Data. Smithsonian Institution Press, Washington, DC.Google Scholar
Wiens, J. J. 2001. Character analysis in morphological phylogenetics: Problems and solutions. Systematic Biology, 50(5):689699.CrossRefGoogle ScholarPubMed
Wilkinson, M. 1992. Ordered versus unordered characters. Cladistics, 8(4):375385.CrossRefGoogle ScholarPubMed