Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T02:02:55.577Z Has data issue: false hasContentIssue false

New phylogenetic insights into the Cambrian radiation of arachnomorph arthropods

Published online by Cambridge University Press:  20 May 2016

Jonathan R. Hendricks
Affiliation:
1Department of Geology, 1475 Jayhawk Boulevard, 120 Lindley Hall, Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence 66045-7613,
Bruce S. Lieberman
Affiliation:
1Department of Geology, 1475 Jayhawk Boulevard, 120 Lindley Hall, Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence 66045-7613, 2Department of Geology, 1475 Jayhawk Boulevard, 120 Lindley Hall, Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence 66045-7613,

Abstract

The Cambrian fossil record of the Arachnomorpha is rich and diverse and includes trilobites, chelicerates, and many taxa known from various soft-bodied faunas including the Burgess Shale and the Chengjiang. Exceptionally well-preserved arthropod fossils are also known from Middle Cambrian strata in Utah. Recently, two new arachnomorphs (Dicranocaris Briggs, Lieberman, Hendricks, Halgedahl, and Jarrard, 2008 and Nettapezoura Briggs, Lieberman, Hendricks, Halgedahl, and Jarrard, 2008) were described from the Wheeler and Marjum formations of Utah. Cladistic analysis is undertaken to investigate arachnomorph relationships in light of these two new genera. The character matrix of Edgecombe and Ramsköld (1999) serves as the foundation for this study, augmented by new characters and taxa. The results of our cladistic analysis suggest that at least three distinct arachnomorph clades had diverged by the Middle Cambrian, and perhaps much earlier; the Utah genera can be referred to groups within one of these clades.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergström, J. and Hou, X.-G. 2003. Arthropod origins. Bulletin of Geosciences, 78:323334.Google Scholar
Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42:795803.Google Scholar
Bremer, K. 1994. Branch support and tree stability. Cladistics, 10:295304.Google Scholar
Briggs, D. E. G., Bruton, D. L., and Whittington, H. B. 1979. Appendages of the arthropod Aglaspis spinifer (Upper Cambrian, Wisconsin) and their significance. Palaeontology, 22:167180.Google Scholar
Briggs, D. E. G. and Collins, D. 1988. A Middle Cambrian Chelicerate from Mount Stephen, British Columbia. Palaeontology, 31:779798.Google Scholar
Briggs, D. E. G. and Collins, D. 1999. The arthropod Alalcomenaeus cambricus Simonetta, from the Middle Cambrian Burgess Shale of British Columbia. Palaeontology, 42:953977.Google Scholar
Briggs, D. E. G. and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science, 246:241243.CrossRefGoogle ScholarPubMed
Briggs, D. E. G., Fortey, R. A., and Wills, M. A. 1992. Morphological disparity in the Cambrian. Science, 256:16701673.Google Scholar
Briggs, D. E. G., Lieberman, B. S., Hendricks, J. R., Halgedahl, S. L., and Jarrard, R. D. 2008. Soft-bodied arthropods from the Middle Cambrian of Utah. Journal of Paleontology, 82:238254.Google Scholar
Bruton, D. L. and Whittington, H. B. 1983. Emeraldella and Leanchoilia, two arthropods from the Burgess Shale, Middle Cambrian, British Columbia. Philosophical Transactions of the Royal Society of London. B 300: 553582.Google Scholar
Budd, G. E. 2002. A palaeontological solution to the arthropod head problem. Nature, 417:271275.Google Scholar
Chen, J.-Y., Edgecombe, G. D., and Ramsköld, L. 1997. Morphological and ecological disparity in naraoiids (Arthropoda) from the Early Cambrian Chengjiang Fauna, China. Records of the Australian Museum, 49:124.Google Scholar
Chen, J.-Y., Waloszek, D., and Mass, A. 2004. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia, 37:320.Google Scholar
Chen, J.-Y., Zhou, G.-Q., Zhu, M.-Y., and Yeh, K.-Y. 1996. The Chengjiang Biota. A Unique Window of the Cambrian Explosion. National Museum of Natural Science, Taichung, 222 p.Google Scholar
Cotton, T. J. and Braddy, S. J. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94:169193.CrossRefGoogle Scholar
Dunlop, J. A. 2005. New ideas about the euchelicerate stem-lineage. Acta zoologica bulgarica, Suppl. No. 1:923.Google Scholar
Dunlop, J. A. and Selden, P. A. 1998. The early history and phylogeny of the chelicerates, p. 221235. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod relationships. Chapman & Hall, London.Google Scholar
Dzik, J. and Lendzion, K. 1988. The oldest arthropods of the East European Platform. Lethaia, 21:2938.Google Scholar
Edgecombe, G. D. and Ramsköld, L. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Journal of Paleontology, 73:263287.Google Scholar
Farris, J. S. 1989. The retention index and rescaled consistency index. Cladistics, 5:417419.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnaean Society, 57:1333.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1997. The Cambrian evolutionary ‘explosion’ recalibrated. BioEssays, 19:429434.Google Scholar
Fortey, R. A. and Theron, J. N. 1994. A new Ordovician arthropod, Soomapsis, and the agnostid problem. Palaeontology, 37:841861.Google Scholar
García-Bellido, D. C. and Collins, D. H. 2006. A new study of Marrella splendens (Arthropoda, Marrellomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Canadian Journal of Earth Sciences, 43:721742.Google Scholar
García-Bellido, D. C. and Collins, D. H. 2007. Reassessment of the genus Leanchoilia (Arthropoda, Arachnomorpha) from the Middle Cambrian Burgess Shale, British Columbia, Canada. Palaeontology, 50:693709.Google Scholar
Goloboff, P. 1993. NONA, version 1.6. Published by the author, Tucumán, Argentina.Google Scholar
Hall, J. 1862. A new crustacean from the Potsdam Sandstone. Canadian Naturalist, 7.Google Scholar
Hammann, W., Laske, R., and Pillola, G. L. 1990. Tariccoia arrusensis n. g. n. sp., an unusual trilobite-like arthropod. Rediscovery of the “phyllocarid” beds of Taricco (1922) in the Ordovician “Puddinga” sequence of Sardinia. Bolletino della Società Paleontologica Italiana, 29.Google Scholar
Hou, X.-G. 1987. Three new large arthropods from Lower Cambrian, Chengjiang, eastern Yunnan. Acta Palaeontologica Sinica, 26:272285.Google Scholar
Hou, X.-G., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. Blackwell Science Ltd., Malden, Massachusetts, 233 p.Google Scholar
Hou, X.-G. and Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45:1116.Google Scholar
Hou, X.-G., Chen, J.-Y., and Lu, H.-Z. 1989. Early Cambrian new arthropods from Chengjiang, Yunnan. Acta Palaeontologica Sinica, 28:4257.Google Scholar
Hou, X.-G., Ramsköld, L., and Bergström, J. 1991. Composition and preservation of the Chengjiang fauna-a Lower Cambrian soft-bodied biota. Zoologica Scripta, 20:395411.Google Scholar
Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology, 38:725.CrossRefGoogle Scholar
Kluge, A. G. and Farris, J. S. 1969. Quantitative phyletics and the evolution of anurans. Systematic Zoology, 18:132.Google Scholar
Lieberman, B. S. 2003. Taking the pulse of the Cambrian radiation. Integrative and Comparative Biology, 43:229237.Google Scholar
Meert, J. G. and Lieberman, B. S. 2004. A palaeomagnetic and palaeobiogeographic perspective on latest Neoproterozoic and early Cambrian tectonic events. Journal of the Geological Society of London, 161:111.Google Scholar
Moore, R. A., Briggs, D. E. G., and Bartels, C. 2005. A new specimen of Weinbergina opitzi (Chelicerata: Xiphosura) from the Lower Devonian Hunsriick Slate, Germany. Paläontologische Zeitschrift, 79:399408.Google Scholar
Nixon, K. C. 1999-2002. WinClada, version 1.00.08. Published by the author, Ithaca, New York.Google Scholar
Nixon, K. C. and Carpenter, J. M. 1996. On simultaneous analysis. Cladistics, 12:221241.Google Scholar
Ogg, J. G. 2004. Status of divisions of the International Geologic Time Scale. Lethaia, 37:183199.Google Scholar
Raymond, P. E. 1920. The appendages, anatomy and relationships of trilobites. Memoirs of the Connecticut Academy of Arts and Science, 7:1169.Google Scholar
Richter, R. and Richter, E. 1929. Weinbergina opitzi, n.g., n.sp., ein Schwertträger (Merost., Xiphos,) aus dem Devon (Rheinland). Senckenbergiana, 11:193209.Google Scholar
Rominger, C. 1887. Description of primordial fossils from Mt. Stephens, N. W. Territory of Canada. Proceedings of the Academy of Natural Sciences of Philadelphia 1887:1219.Google Scholar
Scholtz, G. and Edgecombe, G. D. 2005. Heads, hox and the phylogenetic position of trilobites, p. 139165. In Koenemann, S. and Jenner, R. (eds.), Crustacea and Arthropod Relationships (Crustacean Issues 16). CRC, Boca Raton, Florida.Google Scholar
Scholtz, G. and Edgecombe, G. D. 2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Development Genes and Evolution, 216:395415.Google Scholar
Simmonetta, A. 1970. Studies on non trilobite arthropods of the Burgess Shale (Middle Cambrian). Palaeontographica Italica, 56:3545.Google Scholar
Simonetta, A. M. and Delle Cave, L. 1975. The Cambrian non trilobite arthropods from the Brugess Shale of British Columbia. A study of their comparative morphology, taxonomy, and evolutionary significance. Palaeontographica Italica, 69.Google Scholar
Størmer, L. 1944. On the relationships and phylogeny of fossil and recent Arachnomorpha: a comparative study on Arachnida, Xiphosura, Eurypterida, Trilobita, and other fossil Arthropoda. Skrifter Utgitt av det Norske Videnskaps-Academi i Oslo, I. Matematisk-Naturvidenskapelig. Klasse, 5: 1158.Google Scholar
Swofford, D. L. and Olsen, G. J. 1990. Phylogeny reconstruction, p. 411501. In Hillis, D. M. and Moritz, C. (eds.), Molecular Systematics. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
Van Roy, P. 2006. An aglaspidid arthropod from the Upper Ordovician of Morocco with remarks on the affinities and limitations of Aglaspidida. Transactions of the Royal Society of Edinburgh (Earth Sciences), 96:327350.Google Scholar
Walcott, C. D. 1911. Middle Cambrian Merostomata. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections, 57:1740.Google Scholar
Walcott, C. D. 1912. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Cambrian Geology and Paleontology II. Smithsonian Miscellaneous Collections, 57:145228.Google Scholar
Walcott, C. D. 1918. Geological explorations in the Canadian Rockies. Explorations and fieldwork of the Smithsonian Institution in 1917. Smithsonian Miscellaneous Collections, 68:420.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33105. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Zhang, W.-T. 1951. Trilobites from the Shipai Shale and their stratigraphical significance, 2, 10 p.Google Scholar