Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T01:22:06.730Z Has data issue: false hasContentIssue false

Patterns of Evolution of the Ediacaran Soft-Bodied Biota

Published online by Cambridge University Press:  15 October 2015

Dmitriy Grazhdankin*
Affiliation:
Trofimuk Institute of Petroleum Geology and Geophysics, prospekt Akademika Koptyuga 3, Novosibirsk, 630090, Russia; and Novosibirsk State University, ulitsa Pirogova 2, Novosibirsk, 630090, Russia,

Abstract

When each of the Avalon-, Ediacara-, and Nama-type fossil assemblages are tracked through geological time, there appear to be changes in species composition and diversity, almost synchronized between different sedimentary environments, allowing a subdivision of the late Ediacaran into the Redkinian, Belomorian and Kotlinian geological time intervals. The Redkinian (580–559 Ma) is characterized by first appearance of both eumetazoan traces and macroscopic organisms (frondomorphs and vendobionts) in a form of Avalon-type communities in the inner shelf environment, whereas coeval Ediacara-type communities remained depauperate. The Belomorian (559–550 Ma) is marked by the advent of eumetazoan burrowing activity in the inner shelf, diversification of frondomorphs, migration of vendobionts from the inner shelf into higher energy environments, and appearance of tribrachiomorphs and bilateralomorphs. Ediacaran organisms formed distinctive ecological associations that coexisted in the low-energy inner shelf (Avalon-type communities), in the wave- and current-agitated shoreface (Ediacara-type communities), and in the high-energy distributary systems (Nama-type communities). The Kotlinian (550–540 Ma) witnessed an expansion of the burrowing activity into wave- and current-agitated shoreface, disappearance of vendobionts, tribrachiomorphs and bilateralomorphs in wave- and current-agitated shoreface, together with a drop in frondomorph diversity. High-energy distributary channel systems of prodeltas served as refugia for Nama-type communities that survived until the end of the Ediacaran and disappeared when the burrowing activity reached high-energy environments. This pattern is interpreted as an expression of ecosystem engineering by eumetazoans, with the Ediacaran organisms being progressively outcompeted by bilaterians.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksenov, E. M. 1990. Vendian of the East European Platform, p. 137. In Sokolov, B. S. and Fedonkin, M. A. (eds.), The Vendian System. Volume 1. Regional Geology. Springer, Berlin.Google Scholar
Aksenov, E. M., Keller, B. M., Sokolov, B. S., Solontsov, L. F., and Shul'ga, P. L. 1978. Obshchaya skhema stratigrafii verkhnego dokembriya Russkoi platformy. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya, 12:1734. (In Russian) Google Scholar
Antcliffe, J. B., Gooday, A. J., and Brasier, M. D. 2011. Testing the protozoan hypothesis for Ediacaran fossils: A developmental analysis of Palaeopascichnus . Palaeontology, 54:11571175.CrossRefGoogle Scholar
Bamforth, E. L. and Narbonne, G. M. 2009. New Ediacaran rangeomorphs from Mistaken Point, Newfoundland, Canada. Journal of Paleontology, 83:897913.Google Scholar
Bamforth, E. L., Narbonne, G. M., and Anderson, M. M. 2008. Growth and ecology of a multi-branched Ediacaran rangeomorph from the Mistaken Point assemblage, Newfoundland. Journal of Paleontology, 82:763777.CrossRefGoogle Scholar
Becker, Yu. R. 1977. Pervye paleontologicheskie nakhodki v rifee Urala. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya, 3:90100. (In Russian) Google Scholar
Becker, Yu. R. 1980. Novoe mestonakhozhdenie fauny ediakarskogo tipa na Urale. Doklady Akademii Nauk SSSR, 254:480482. (In Russian) Google Scholar
Becker, Yu. R. 1996. Otkrytie ediakarskoi bioty v krovle venda Yuzhnogo Urala. Regional'naya Geologiya i Metallogeniya, 5:111131. (In Russian) Google Scholar
Benus, A. P. 1988. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, Eastern Newfoundland), p. 89. In Landing, E. and Narbonne, G. M. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian–Cambrian Boundary. Bulletin of the New York State Museum, No. 463.Google Scholar
Billings, E. 1872. Fossils in Huronian rocks. Canadian Naturalist and Quarterly Journal of Science, 6:478.Google Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of early Cambrian evolution. Science, 261:12931298.CrossRefGoogle ScholarPubMed
Boynton, H. E. and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13:165182.Google Scholar
Brasier, M. D. 1979. The Cambrian radiation event, p. 103159. In House, M. R. (ed.), The Origin of Major Invertebrate Groups. Systematics Association Special Volume 12, Academic Press, London and New York.Google Scholar
Brasier, M. D. 1992. Nutrient-enriched waters and the early skeletal fossil record. Journal of the Geological Society, London, 149:621629.Google Scholar
Brasier, M. D. and Antcliffe, J. B. 2009. Evolutionary relationships within the Avalonian Ediacara biota: New insights from laser analysis. Journal of the Geological Society, London, 166:363384.Google Scholar
Brasier, M. D., McIlroy, D., Liu, A. G., Antcliffe, J. B., and Menon, L. R. 2013. The oldest evidence of bioturbation on Earth: Comment. Geology, 41:e289.Google Scholar
Butterfield, N. J. 2011. Animals and the invention of the Phanerozoic Earth system. Trends in Ecology and Evolution, 26:8187.CrossRefGoogle ScholarPubMed
Butterfield, N. J. and Harvey, T. H. P. 2012. Small carbonaceous fossils (SCFs): A new measure of early Paleozoic paleobiology. Geology, 40:7174.CrossRefGoogle Scholar
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2007. Late Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science, 315:9295.Google Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.2.0.CO;2>CrossRefGoogle Scholar
Compston, W., Sambridge, M. S., Reinfrank, R. F., Moczydlowska, M., Vidal, G., and Claesson, S. 1995. Numerical ages of volcanic rocks and the earliest faunal zone within the late Precambrian of east Poland. Journal of the Geological Society, London, 152:599611.CrossRefGoogle Scholar
Compston, W., Wright, A. E., and Toghill, P. 2002. Dating the late Precambrian volcanicity of England and Wales. Journal of the Geological Society, London, 159:323339.CrossRefGoogle Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A., and Jin, Y. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 308:9598.CrossRefGoogle ScholarPubMed
Cope, J. C. W. 1983. Precambrian fossils of the Carmarthen area, Dyfed. Nature in Wales, New Series, 1:1116.Google Scholar
Dedeev, V. A. and Keller, B. M. 1986. Verkhnii Dokembrii Evropeiskogo Severa SSSR (Ob'yasnitel'naya zapiska k skheme stratigrafii). AN SSSR, Komi filial, Institut geologii, Syktyvkar, 41 p. (In Russian) Google Scholar
Dong, L., Xiao, S., Shen, B., and Zhou, C. 2008. Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: Tentative phylogenetic interpretation and implications for evolutionary stasis. Journal of the Geological Society, London, 165:367378.Google Scholar
Elming, S. Å., Kravchenko, S. N., Layer, P., Rusakov, O. M., Glevasskaya, A. M., Mikhailova, N. P., and Bachtadse, V. 2007. Palaeomagnetism and 40Ar/39Ar age determinations of the Ediacaran traps from the southwestern margin of the East European Craton, Ukraine: Relevance to the Rodinia break-up. Journal of the Geological Society, London, 164:969982.Google Scholar
Erwin, D. H. 2008. Macroevolution of ecosystem engineering, niche construction and diversity. Trends in Ecology and Evolution, 23:304310.CrossRefGoogle ScholarPubMed
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science, 334:10911097.CrossRefGoogle ScholarPubMed
Fedonkin, M. A. 1976. Sledy mnogokletochnykh iz valdaiskoi serii. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya, 4:129132. (In Russian) Google Scholar
Fedonkin, M. A. 1980 a. Iskopaemye sledy dokembriiskikh Metazoa. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya, 1:3946. (In Russian) Google Scholar
Fedonkin, M. A. 1980 b. Novye predstaviteli dokembriiskikh kishechnopolostnykh na severe Russkoi platformy. Paleontologicheskii Zhurnal, 2:715. (In Russian) Google Scholar
Fedonkin, M. A. 1981. Belomorskaya Biota Venda (Dokembriiskaya Besskeletnaya Fauna Severa Russkoi Platformy). Nauka, Moscow, 100 p. (In Russian) Google Scholar
Fedonkin, M. A. 1984. Promorfologiya vendskikh Radialia, p. 3058. In Ivanovskii, A. B. and Ivanov, I. B. (eds.), Stratigrafiya i Paleontologiya Fanerozoya. Nauka, Moscow. (In Russian) Google Scholar
Fedonkin, M. A. 1985 a. Paleoikhnologiya vendskikh Metazoa, p. 112117. In Sokolov, B. S. and Ivanovskii, A. B. (eds.), Vendskaya Sistema. Istoriko-Geologicheskoe i Paleontologicheskoe Obosnovanie. Tom 1. Paleontologiya. Nauka, Moscow. (In Russian) Google Scholar
Fedonkin, M. A. 1985 b. Sistematicheskoe opisanie vendskikh Metazoa, p. 70106. In Sokolov, B. S. and Ivanovskii, A. B. (eds.), Vendskaya Sistema. Istoriko-Geologicheskoe i Paleontologicheskoe Obosnovanie. Tom 1. Paleontologiya. Nauka, Moscow. (In Russian) Google Scholar
Fedonkin, M. A. 2002. Andiva ivantsovi gen. et sp. n. and related carapace-bearing Ediacaran fossils from the Vendian of the Winter Coast, White Sea, Russia. Italian Journal of Zoology, 69:175181.Google Scholar
Fedonkin, M. A. and Ivantsov, A. Yu. 2007. Ventogyrus, a possible siphonophore-like trilobozoan coelenterate from the Vendian sequence (late Neoproterozoic), northern Russia, p. 187194. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publication 286.Google Scholar
Fedonkin, M. A., Simonetta, A., and Ivantsov, A. Y. 2007 a. New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): Palaeoecological and evolutionary implications, p. 157179. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publication 286.Google Scholar
Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. 2007 b. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. The Johns Hopkins University Press, Baltimore, 326 p.Google Scholar
Ford, T. D. 1958. Pre-Cambrian fossils from Charnwood Forest. Proceedings of the Yorkshire Geological Society, 31:211217.Google Scholar
Gehling, J. G. 1988. A cnidarian of actinian-grade from the Ediacaran Pound Subgroup, South Australia. Alcheringa, 12:299314.CrossRefGoogle Scholar
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the Metazoan tree, p. 181224. In Radhakrishna, B. P. (ed.), The world of Martin F. Glaessner. Geological Society of India Memoir No. 20.Google Scholar
Gehling, J. G. 2007. Fleshing out the Ediacaran period, p. 425428. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publication 286.Google Scholar
Gehling, J. G. and Droser, M. L. 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews, 96:196206.Google Scholar
Gehling, J. G. and Droser, M. L. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology, 41:447450.Google Scholar
Gehling, J. G. and Narbonne, G. M. 2007. Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon Zone, Newfoundland. Canadian Journal of Earth Sciences, 44:367387.Google Scholar
Gehling, J. G. and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70:185195.CrossRefGoogle Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology, 43:427456.CrossRefGoogle Scholar
Gehling, J. G., Jensen, S., Droser, M. L., Myrow, P. M., and Narbonne, G. M. 2001. Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. Geological Magazine, 138:213218.Google Scholar
Gehling, J. G., Droser, M. L., Jensen, S. R., and Runnegar, B. N. 2005. Ediacaran organisms: Relating form to function, p. 4366. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development: Proceedings of a symposium honoring Adolf Seilacher for his contributions to paleontology, in celebration of his 80th birthday. Peabody Museum of Natural History, Yale University, New Haven.Google Scholar
Gehling, J. G., Runnegar, B. N., and Droser, M. L. 2014 . Scratch traces of large Ediacaran bilaterian animals. Journal of Paleontology, 88:284298.CrossRefGoogle Scholar
Germs, G. J. B. 1968. Discovery of a new fossil in the Nama System, South West Africa. Nature, 219:5354.Google Scholar
Germs, G. J. B. 1995. The Neoproterozoic of southwestern Africa, with emphasis on platform stratigraphy and paleontology. Precambrian Research, 73:137151.CrossRefGoogle Scholar
Geyer, G. and Uchman, A. 1995. Ichnofossil assemblages from the Nama Group (Neoproterozoic–lower Cambrian) in Namibia and the Proterozoic–Cambrian boundary problem revisited. Beringeria, Special Issue, 2:175202.Google Scholar
Glaessner, M. F. 1958. New fossils from the base of the Cambrian in South Australia. Transactions of the Royal Society of South Australia, 81:185188.Google Scholar
Glaessner, M. F. 1969. Trace fossils from the Precambrian and basal Cambrian. Lethaia, 2:369393.Google Scholar
Glaessner, M. F. and Daily, B. 1959. The geology and late Precambrian fauna of the Ediacara Fossil Reserve. Records of the South Australian Museum, 13:369401.Google Scholar
Glaessner, M. F. and Wade, M. 1966. The late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599628.Google Scholar
Gnilovskaya, M. B. 1971. Drevneishie vodnye rasteniya venda Russkoi platformy. Paleontologicheskii Zhurnal, 3:101107. (In Russian) Google Scholar
Gnilovskaya, M. B. 1975. Novye dannye o prirode vendotenid. Doklady Akademii Nauk SSSR, 221:953955. (In Russian) Google Scholar
Gnilovskaya, M. B. 1979. Vendotenidy, p. 3948. In Keller, B. M. and Rozanov, A. Yu. (eds.), Paleontologiya Verkhnedokembriiskikh i Kembriiskikh Otlozhenii Vostochno-Evropeiskoi Platformy. Nauka, Moscow. (In Russian) Google Scholar
Gnilovskaya, M. B., Istchenko, A. A., Kolesnikov, Ch. M., Korenchuk, L. V., and Udal'tsov, A. P. 1979. Vendotaenidy Vostochno-Evropeiskoi Platformy. Nauka, Leningrad, 142 p. (In Russian) Google Scholar
Gooday, A. J. 2002. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: A review. Journal of Oceanography, 58:305332.Google Scholar
Grazhdankin, D. 2000. The Ediacaran genus Inaria: A taphonomic/morphodynamic analysis. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 216:134.Google Scholar
Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: Facies versus biogeography and evolution. Paleobiology, 30:203221.Google Scholar
Grazhdankin, D. V. 2011. Ediacaran biota, p. 342348. In Reitner, J. and Thiel, V. (eds.), Encyclopedia of Geobiology. Springer Science + Business Media B.V., Dordrecht.Google Scholar
Grazhdankin, D. and Gerdes, G. 2007. Ediacaran microbial colonies. Lethaia, 40:201210.Google Scholar
Grazhdankin, D. V. and Maslov, A. V. 2009. Sequence stratigraphy of the upper Vendian of the East European Craton. Doklady Earth Sciences, 426:517521.Google Scholar
Grazhdankin, D. and Seilacher, A. 2002. Underground Vendobionta from Namibia. Palaeontology, 45:5778.CrossRefGoogle Scholar
Grazhdankin, D. and Seilacher, A. 2005. A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni . Geological Magazine, 142:571582.Google Scholar
Grazhdankin, D. V., Maslov, A. V., Mustill, T. M. R., and Krupenin, M. T. 2005. The Ediacaran White Sea biota in the Central Urals. Doklady Earth Sciences, 401:382385.Google Scholar
Grazhdankin, D. V., Nagovitsin, K. E., and Maslov, A. V. 2007. Upper Vendian Miaohe-type ecological assemblage of the East European Platform. Doklady Earth Sciences, 417:11831187.Google Scholar
Grazhdankin, D. V., Balthasar, U., Nagovitsin, K. E., and Kochnev, B. B. 2008. Carbonate-hosted Avalon-type fossils in arctic Siberia. Geology, 36:803806.Google Scholar
Grazhdankin, D. V., Maslov, A. V., and Krupenin, M. T. 2009. Structure and depositional history of the Vendian Sylvitsa Group in the Western Flank of the Central Urals. Stratigraphy and Geological Correlation, 17:475492.Google Scholar
Grazhdankin, D. V., Maslov, A. V., Krupenin, M. T., and Ronkin, Yu. L. 2010. Osadochnye Sistemy Sylvitskoi Serii (Verkhnii Vend Srednego Urala). UrO RAN, Ekaterinburg, 280 p. (In Russian) Google Scholar
Grazhdankin, D. V., Marusin, V. V., Meert, J., Krupenin, M. T., and Maslov, A. V. 2011. Kotlin Regional Stage in the South Urals. Doklady Earth Sciences, 440:12221226.Google Scholar
Grazhdankin, D. V., Goy, Yu. Yu., and Maslov, A. V. 2012. Late Riphean microbial colonies adapted to desiccating environments. Doklady Earth Sciences, 446:11571161.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270:598604.Google Scholar
Grytsenko, V. P. 2009. Novi znakhidky ikhnofosylii u bronnytskykh verstvakh (Mohyliv-Podilska seriya vendu) ta paleoekolohichni umovy podilskogo morskogo baseinu u bronnytskyi chas, p. 3035. In Gozhik, P. F. (ed.), Vykopna Fauna i Flora Ukrainy: Paleoekolohichnyi ta stratihrafichnyi aspekty. Institut Heolohichnykh Nauk NAN Ukrainy, Kyiv. (In Ukrainian) Google Scholar
Gureev, Yu. A. 1987. Morfologicheskii Analiz i Sistematika Vendiat. Institut geologicheskikh nauk AN SSSR, Kiev, 54 p. (In Russian) Google Scholar
Gureev, Yu. A. 1988. Besskeletnaya fauna venda, p. 6581. In Ryabenko, V. A. (ed.), Biostratigrafiya i Paleogeograficheskie Rekonstruktsii Dokembriya Ukrainy. Naukova Dumka, Kiev. (In Russian) Google Scholar
Gürich, G. 1929. Die ältesten Fossilien Südafrikas. Zeitschrift praktische Geologie mit besonderer Berücksichtigung der Lagerstättenkunde, 37 (6):85.Google Scholar
Gürich, G. 1933. Die Kuibis-Fossilien der Nama-Formation von Südwestafrika. Palaeontologische Zeitschrift, 15:137154.Google Scholar
Hahn, G. and Pflug, H. D. 1988. Zweischalige organismen aus dem Jung-Präkambrium (Vendium) von Namibia (SW-Afrika). Geologica et Palaeontologica, 22:119.Google Scholar
Haines, P. W. 2000. Problematic fossils in the late Neoproterozoic Wonoka Formation, South Australia. Precambrian Research, 100:97108.Google Scholar
Hertzberg, R. W. 1996. Deformation and Fracture Mechanics of Engineering Materials. John Wiley and Sons, Inc., 786 p.Google Scholar
Hofmann, H. J., Fritz, W. H., and Narbonne, G. M. 1983. Ediacaran (Precambrian) fossils from the Wernecke Mountains, Northwestern Canada. Science, 221:455457.Google Scholar
Hofmann, H. J., O'Brien, S. J., and King, A. F. 2008. Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. Journal of Paleontology, 82:136.Google Scholar
Ichaso, A. A., Dalrymple, R. W., and Narbonne, G. M. 2007. Paleoenvironmental and basin analysis of the late Neoproterozoic (Ediacaran) upper Conception and St. John's groups, west Conception Bay, Newfoundland. Canadian Journal of Earth Sciences, 44:2541.Google Scholar
Iglesia Llanos, M. P., Tait, J. A., Popov, V., and Abalmassova, A. 2005. Palaeomagnetic data from Ediacaran (Vendian) sediments of the Arkhangelsk region, NW Russia: An alternative apparent polar wander path of Baltica for the late Proterozoic–early Palaeozoic. Earth and Planetary Science Letters, 240:732747.Google Scholar
Ivantsov, A. Yu. 1999. A new dickinsonid from the upper Vendian of the White Sea Winter Coast (Russia, Arkhangelsk Region). Paleontological Journal, 33:211221.Google Scholar
Ivantsov, A. Yu. 2001. Vendia and other Precambrian ‘arthropods.’ Paleontological Journal, 35:335343.Google Scholar
Ivantsov, A. Yu. 2004. New Proarticulata from the Vendian of the Arkhangel'sk Region. Paleontological Journal, 38:247253.Google Scholar
Ivantsov, A. Yu. 2007. Small Vendian transversely articulated fossils. Paleontological Journal, 41:113122.Google Scholar
Ivantsov, A. Yu. 2009. New reconstruction of Kimberella, problematic Vendian metazoan. Paleontological Journal, 43:601611.Google Scholar
Ivantsov, A. Yu. 2011. Feeding traces of Proarticulata—the Vendian Metazoa. Paleontological Journal, 45:237248.Google Scholar
Ivantsov, A. Yu. 2013. Trace fossils of Precambrian metazoans “Vendobionta” and “mollusks.” Stratigraphy and Geological Correlation, 21:252264.Google Scholar
Ivantsov, A. Yu. and Fedonkin, M. A. 2002. Conulariid-like fossil from the Vendian of Russia: A metazoan clade across the Proterozoic/Palaeozoic boundary. Palaeontology, 45:12191229.Google Scholar
Ivantsov, A. Yu. and Grazhdankin, D. V. 1997. Novyi predstavitel' petalonam iz verkhnego venda Arkhangel'skoi oblasti. Paleontologicheskii Zhurnal, 1:318. (In Russian) Google Scholar
Ivantsov, A. Yu. and Malakhovskaya, Ya. E. 2002. Giant traces of Vendian animals. Doklady Earth Sciences, 385A:618622.Google Scholar
Ivantsov, A. Yu., Malakhovskaya, Ya. E., and Serezhnikova, E. A. 2004. Some problematic fossils from the Vendian of the southeastern White Sea region. Paleontological Journal, 38:19.Google Scholar
Jenkins, R. J. F. 1995. The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Research, 73:5169.Google Scholar
Jenkins, R. J. F. and Gehling, J. G. 1977. A review of the frond-like fossils of the Ediacara assemblage. Records of the South Australian Museum, 17 (23):347359.Google Scholar
Jensen, S. 1997. Trace fossils from the lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata, 42:1110.Google Scholar
Jensen, S. 2003. The Proterozoic and earliest Cambrian trace fossil record: Patterns, problems and perspectives. Integrative and Comparative Biology, 43:219228.CrossRefGoogle ScholarPubMed
Jensen, S. and Runnegar, B. N. 2005. A complex trace fossil from the Spitskop Member (terminal Ediacaran–?lower Cambrian) of southern Namibia. Geological Magazine, 142:561569.Google Scholar
Keller, B. M. 1976. Besskeletnye zhivotnye dokembriya i ikh stratigraficheskoe znachenie. Izvestiya Akademii Nauk. Seriya Geologicheskaya, 8:6877.Google Scholar
Keller, B. M. and Fedonkin, M. A. 1976. Novye nakhodki okamenelostei v valdaiskoi serii dokembriya po r. Syuz'me. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya, 3:3844.Google Scholar
Keller, B. M., Menner, V. V., Stepanov, V. A., and Chumakov, N. M. 1974. Novye nakhodki Metazoa v vendomii Russkoi platformy. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya, 12:130134.Google Scholar
Kouchinsky, A., Bengtson, S., Feng, W., Kutygin, R., and Val'kov, A. 2009. The lower Cambrian fossil Anabaritids: Affinities, occurrences and systematics. Journal of Systematic Palaeontology, 7:241298.CrossRefGoogle Scholar
Knoll, A. H. and Walter, M. R. 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356:673678.Google Scholar
Laflamme, M. and Narbonne, G. M. 2008. Ediacaran fronds. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:162179.Google Scholar
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78:827837.Google Scholar
Laflamme, M., Narbonne, G. M., Greentree, C., and Anderson, M. M. 2007. Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland, p. 237257. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publication 286.Google Scholar
Laflamme, M., Xiao, S., and Kowalewski, M. 2009. Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences of the United States of America, 106:1443814443.Google Scholar
Laflamme, M., Flude, L. I., and Narbonne, G. M. 2012. Ecological tiering and the evolution of a stem: The oldest stemmed frond from the Ediacaran of Newfoundland, Canada. Journal of Paleontology, 86:193200.Google Scholar
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J., and Erwin, D. H. 2013. The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? Gondwana Research, 23:558573.Google Scholar
Lan, Z.-W. and Chen, Z.-Q. 2012. Possible animal body fossils from the late Neoproterozoic interglacial successions in the Kimberley region, northwestern Australia. Gondwana Research, 21:293301.Google Scholar
Levashova, N. M., Bazhenov, M. L., Meert, J. G., Kuznetsov, N. B., Golovanova, I. V., Danukalov, K. N., and Fedorova, N. M. 2013. Paleogeography of Baltica in the Ediacaran: Paleomagnetic and geochronological data from the clastic Zigan Formation, South Urals. Precambrian Research, 236:1630.CrossRefGoogle Scholar
Liu, A. G., McIlroy, D., and Brasier, M. D. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123126.Google Scholar
Liu, A. G., McIlroy, D., Matthews, J. J., and Brasier, M. D. 2012. A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. Journal of the Geological Society, London, 169:395403.Google Scholar
Martin, M. W., Grazhdankin, D. V., Bowring, S. A., Evans, D. A. D., Fedonkin, M. A., and Kirschvink, J. L. 2000. Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: Implications for Metazoan evolution. Science, 288:841845.Google Scholar
Marusin, V. V., Grazhdankin, D. V., and Maslov, A. V. 2011. Redkino Stage in evolution of Vendian macrophytes. Doklady Earth Sciences, 436:197202.CrossRefGoogle Scholar
Mason, S. J., Narbonne, G. M., Dalrymple, R. W., and O'Brien, S. J. 2013. Paleoenvironmental analysis of Ediacaran strata in the Catalina Dome, Bonavista Peninsula, Newfoundland. Canadian Journal of Earth Sciences, 50:197212.Google Scholar
McMenamin, M. 1993. Osmotrophy in fossil protoctists and early animals. Invertebrate Reproduction and Development, 23:165166.Google Scholar
Meyer, M., Schiffbauer, J. D., Xiao, S., Cai, Y., and Hua, H. 2012. Taphonomy of the upper Ediacaran enigmatic ribbonlike fossil Shaanxilithes . Palaios, 27:354372.Google Scholar
Murphy, M. A. and Salvador, A. 1999. International stratigraphic guide—an abridged version. Episodes, 22:255271.CrossRefGoogle Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:11411144.Google Scholar
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.CrossRefGoogle Scholar
Narbonne, G. M. and Gehling, J. G. 2003. Life after snowball: The oldest complex Ediacaran fossils. Geology, 31:2730.2.0.CO;2>CrossRefGoogle Scholar
Narbonne, G. M. and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 30:647676.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E., and Anderson, M. M. 1987. A candidate stratotype for the Precambrian–Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24:12771293.Google Scholar
Narbonne, G. M., Saylor, B. Z., and Grotzinger, J. P. 1997. The youngest Ediacaran fossils from South Africa. Journal of Paleontology, 71:953967.Google Scholar
Narbonne, G. M., Laflamme, M., Greentree, C., and Trusler, P. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology, 83:503523.Google Scholar
Narbonne, G. M., Xiao, S., and Shields, G. 2012. The Ediacaran Period, p. 413435. In Gradstein, F., Ogg, J., Schmitz, M. D., and Ogg, G. (eds.), Geologic Timescale 2012. Elsevier, Boston.Google Scholar
Nosova, A. A., Kuz'menkova, O. F., Veretennikov, N. V., Petrova, L. G., and Levsky, L. K. 2008. Neoproterozoic Volhynia-Brest Magmatic Province in the Western East European Craton: Within-plate magmatism in an ancient suture zone. Petrology, 16:105135.CrossRefGoogle Scholar
Palij, V. M. 1976. Ostatki besskeletnoi fauny i sledy zhiznedeyatel'nosti iz itlozhenii verkhnego dokembriya i nizhnego kembriya Podolii, p. 6377. In Shul'ga, P. L. (ed.), Paleontologiya i Stratigrafiya Verkhnego Dokembriya i Nizhnego Paleozoya Yugo-Zapada Vostochno-Evropeiskoi Platformy. Naukova Dumka, Kiev. (In Russian) Google Scholar
Palij, V. M., Posti, E., and Fedonkin, M. A. 1979. Myagkotelye metazoa i iskopaemye sledy zhivotnykh venda i rannego kembriya, p. 4982. In Keller, B. M. and Rozanov, A. Yu. (eds.), Paleontologiya Verkhnedokembriiskikh i Kembriiskikh Otlozhenii Vostochno-Evropeiskoi Platformy. Nauka, Moscow. (In Russian) Google Scholar
Pflug, H. D. 1966. Neue Fossilreste aus den Nama-Schichten in Südwest-Afrika. Paläontologische Zeitschrift, 40:1425.CrossRefGoogle Scholar
Preiss, W. V. 2000. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Research, 100:2163.Google Scholar
Pyle, L. J., Narbonne, G. M., James, N. P., Dalrymple, R. W., and Kaufman, A. J. 2004. Integrated Ediacaran chronostratigraphy, Wernecke Mountains, northwestern Canada. Precambrian Research, 132:127.Google Scholar
Ronkin, Yu. L., Grazhdankin, D. V., Maslov, A. V., Mizens, G. A., Matukov, D. I., Krupenin, M. T., Petrov, G. A., Lepikhina, O. P., and Kornilova, A. Yu. 2006. U-Pb (SHRIMP II) age of zircons from ash beds in the Chernokamen Formation, Vendian Sylvitsa Group (Central Urals). Doklady Earth Sciences, 411:13411345.Google Scholar
Rogov, V., Marusin, V., Bykova, N., Goy, Yu., Nagovitsin, K., Kochnev, B., Karlova, G., and Grazhdankin, D. 2012. The oldest evidence of bioturbation on Earth. Geology, 40:395398.Google Scholar
Rogov, V., Marusin, V., Bykova, N., Goy, Yu., Nagovitsin, K., Kochnev, B., Karlova, G., and Grazhdankin, D. 2013. The oldest evidence of bioturbation on Earth: Reply. Geology, 41:e290.Google Scholar
Rozanov, A. Yu., Missarzhevsky, V. V., Volkova, N. A., Voronova, L. G., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., and Sidorov, A. D. 1969. Tommotskii Yarus i Problema Nizhnei Granitsy Kembriya. Trudy Geologicheskogo Instituta AN SSSR No. 206. Nauka, Moscow, 380 p. (In Russian) Google Scholar
Savazzi, E. 2007. A new reconstruction of Protolyellia (early Cambrian psammocoral), p. 339353. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publication 286.Google Scholar
Savazzi, E. 2012. A reassessment of the lower Cambrian psammocoral Spatangopsis costata . Paleontological Research, 16:159170.Google Scholar
Saylor, B. Z., Grotzinger, J. P., and Germs, G. J. B. 1995. Sequence stratigraphy and sedimentology of the Neoproterozoic Kuibis and Schwarzrand Subgroups (Nama Group), southwestern Namibia. Precambrian Research, 73:153171.Google Scholar
Schmitz, M. D. 2012. Appendix 2—Radiometric ages used in GTS2012, p. 10451082. In Gradstein, F., Ogg, J., Schmitz, M. D., and Ogg, G. (eds.), The Geologic Time Scale 2012. Elsevier, Boston.Google Scholar
Seilacher, A. 1984. Late Precambrian and early Cambrian Metazoa: Preservational or real extinctions?, p. 159168. In Holland, H. D. and Trendall, A. F. (eds.), Patterns of Change in Earth Evolution. Report of the Dahlem Workshop (Berlin, 1983, May 1–6). Physical, Chemical, and Earth Sciences Research Reports. Springer, New York.Google Scholar
Seilacher, A. 1985. Discussion on Precambrian metazoans. Philosophical Transactions of the Royal Society of London, B311:4748.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: Lost constructions of Precambrian evolution. Journal of the Geological Society, London, 149:607613.Google Scholar
Seilacher, A. 2007. The nature of vendobionts, p. 387397. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publication 286.Google Scholar
Seilacher, A. and Goldring, R. 1996. Class Psammocorallia (Coelenterata, Vendian–Ordovician): Recognition, systematics, and distribution. GFF, 118:207216.Google Scholar
Seilacher, A. and MacClintock, C. 2005. Crinoid anchoring strategies for soft-bottom dwelling. Palaios, 20:224240.Google Scholar
Seilacher, A., Grazhdankin, D., and Legouta, A. 2003. Ediacaran biota: The dawn of animal life in the shadow of giant protists. Palaeontological Research, 7:4354.Google Scholar
Semikhatov, M. A. 2008. Verkhnii dokembrii, p. 1527. In Zhamoida, A. I. and Petrov, O. V. (eds.), Sostoyanie Izuchennosti Stratigrafii Dokembriya i Fanerozoya Rossii. Zadachi Dal'neishikh Issledovanii. Postanovleniya Mezhvedomstvennogo Stratigraficheskogo Komiteta i Ego Postoyannykh Komissii. Vypusk 38. VSEGEI, Saint Petersburg.Google Scholar
Semikhatov, M. A., Ovchinnikova, G. V., Gorokhov, I. M., Kuznetsov, A. B., Kaurova, O. K., and Petrov, P. Yu. 2003. Pb-Pb isochron age and Sr-isotopic signature of the upper Yudoma carbonate sediments (Vendian of the Yudoma-Maya Trough, eastern Siberia). Doklady Earth Sciences, 393:10931097.Google Scholar
Serezhnikova, E. A. 2007. Palaeophragmodictya spinosa sp. nov., a bilateral benthic organism from the Vendian of the southeastern White Sea region. Paleontological Journal, 41:360369.Google Scholar
Shen, B., Xiao, S., Dong, L., Zhou, C., and Liu, J. 2007. Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: Implications for their evolutionary roots and biostratigraphic significance. Journal of Paleontology, 81:13961411.Google Scholar
Shen, B., Dong, L., Xiao, S., and Kowalewski, M. 2008. The Avalon explosion: Evolution of Ediacaran morphospace. Science, 319:8184.Google Scholar
Sokolov, B. S. 1972. Vendskii etap v evolyutsii zemli, p. 114124. In Sokolov, B. S. (ed.), Mezhdunarodnyi Geologicheskii Kongress. 24 Sessiya. Doklady Sovetskikh Geologov. Problema 7, Paleontologiya. Nauka, Moscow.Google Scholar
Sokolov, B. S. 1975. O paleontologicheskikh nakhodkakh v dousol'skikh otlozheniyakh Irkutskogo amfiteatra, p. 112117. In Sokolov, B. S. and Khomentovsky, V. V. (eds.), Analogi Vendskogo Kompleksa v Sibiri. Nauka, Moscow.Google Scholar
Sokolov, B. S. 1976. Organicheskii mir zemli na puti k fanerozoiskoi differentsiatsii. Vestnik Akademii Nauk SSSR, 1:126143.Google Scholar
Sokolov, B. S. and Fedonkin, M. A. 1984. The Vendian as the terminal system of the Precambrian. Episodes, 7:1219.Google Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2007. Poriferan paraphyly and its implications for Precambrian palaeobiology, p. 355368. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publication 286.Google Scholar
Sperling, E. A., Peterson, K. J., and Laflamme, M. 2011. Rangeomorphs, Thectardis (Porifera?) and dissolved organic carbon in the Ediacaran oceans. Geobiology, 9:2433.Google Scholar
Sprigg, R. C. 1947. Early Cambrian (?) jellyfishes from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia, 71:212224.Google Scholar
Sprigg, R. C. 1949. Early Cambrian ‘jellyfishes’ of Ediacara, South Australia and Mount John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia, 73:7299.Google Scholar
Stankovsky, A. F., Verichev, E. M., Grib, V. P., and Dobeiko, I. P. 1981. Vend yugo-vostochnogo Belomor'ya. Izvestiya Akademii Nauk SSSR. Seriya Geologicheskaya, 2:7887. (In Russian) Google Scholar
Stankovsky, A. F., Verichev, E. M., and Dobeiko, I. P. 1990. Vendian of the south-eastern White Sea Area, p. 7687. In Sokolov, B. S. and Fedonkin, M. A. (eds.), The Vendian System. Volume 1. Regional Geology. Springer, Berlin.Google Scholar
Sun, W. 1986. Late Precambrian scyphozoan medusa Mawsonites randellensis sp. nov. and its significance in the Ediacara metazoan assemblage, South Australia. Alcheringa, 10:169181.Google Scholar
Trusler, P., Stilwell, J., and Vickers-Rich, P. 2007. Comment: Future research directions for further analysis of Kimberella , p. 181185. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Geological Society of London Special Publication 286.Google Scholar
Van Iten, H., Leme, J. de M., Marques, A. C., and Simões, M. G. 2013. Alternative interpretations of some earliest Ediacaran fossils from China. Acta Palaeontologica Polonica, 58:111113.Google Scholar
Vodanjuk, S. A. 1989, Ostatki besskeletnykh metazoa iz khatyspytskoi svity Olenekskogo podnyatiya, p. 6174. In Khomentovsky, V. V. and Sovetov, J. K. (eds.), Pozdnii Dokembrii i Rannii Paleozoi Sibiri. Aktual'nye Voprosy Stratigrafii. IGiG SO RAN, Novosibirsk. (In Russian) Google Scholar
Wade, M. 1969. Medusae from uppermost Precambrian or Cambrian sandstones, central Australia. Palaeontology, 12:351365.Google Scholar
Wade, M. 1972. Hydrozoa and scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology, 15:197225.Google Scholar
Waggoner, B. M. 1999. Biogeographic analyses of the Ediacara biota: A conflict with paleotectonic reconstructions. Paleobiology, 25:440458.Google Scholar
Waggoner, B. M. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology, 43:104113.Google Scholar
Wang, Y. and Wang, X. 2008. Macroalgal holdfast and their interaction with environments from the Neoproterozoic Doushantuo Formation in Guizhou, South China. Frontiers of Biology in China, 3:113122.Google Scholar
Wang, Y., Wang, X., and Huang, Y. 2008. Megascopic symmetrical metazoans from the Ediacaran Doushantuo Formation in the northeastern Guizhou, South China. Journal of China University of Geosciences, 19:200206.Google Scholar
Wang, X., Erdtmann, B.-D., Chen, X., and Mao, X. 1998. Integrated sequence-, bio- and chemostratigraphy of the terminal Proterozoic to lowermost Cambrian “black rock series” from central South China. Episodes, 21:178189.Google Scholar
Wilby, P. R., Carney, J. H., and Howe, M. P. A. 2011. A rich Ediacaran assemblage from eastern Avalonia: Evidence of early widespread diversity in the deep ocean. Geology, 39:655658.Google Scholar
Wood, D. A., Dalrymple, R. W., Narbonne, G. M., Gehling, J. G., and Clapham, M. E. 2003. Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Canadian Journal of Earth Sciences, 40:13751391.Google Scholar
Xiao, S. and Laflamme, M. 2009. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution, 24:3140.Google Scholar
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South China. Journal of Paleontology, 76:247376.Google Scholar
Yuan, X., Li, J., and Cao, R. 1999. A diverse metaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia, 32:143155.Google Scholar
Yuan, X., Chen, Z., Xiao, S., Zhou, C., and Hua, H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470:390393.Google Scholar
Zhuravlev, A. Y., Gámez Vintaned, J. A., and Ivantsov, A. Yu. 2009. First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin. Geological Magazine, 146:775780.Google Scholar