Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T22:53:12.829Z Has data issue: false hasContentIssue false

Pennsylvanian sponge from the Mecca Quarry Shale, Carbondale Group (Indiana, USA) and the paleobiogeographic distribution of Teganiella in the paleoequatorial region of Laurentia

Published online by Cambridge University Press:  28 February 2019

Lucas D. Mouro
Affiliation:
Instituto de Geociências, Departamento de Geologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21949-900, Brazil Programa de Pós-Graduação em Geologia, Programa de Formação em Recursos Humanos da Petrobras – PFRHPB 240, Departamento de Geologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil, 88040-900, Brazil
Rodrigo S. Horodyski
Affiliation:
Geology Graduate Program, Universidade do Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul 93022-750, Brazil
Antonio. C.S. Fernandes
Affiliation:
Museu Nacional, Departamento de Geologia e Paleontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 20940-040, Brazil ,
Marcelo A. Carvalho
Affiliation:
Museu Nacional, Departamento de Geologia e Paleontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 20940-040, Brazil ,
Mateus. S. Silva
Affiliation:
Programa de Pós-Graduação em Geologia, Programa de Formação em Recursos Humanos da Petrobras – PFRHPB 240, Departamento de Geologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil, 88040-900, Brazil
Breno L. Waichel
Affiliation:
Programa de Pós-Graduação em Geologia, Programa de Formação em Recursos Humanos da Petrobras – PFRHPB 240, Departamento de Geologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil, 88040-900, Brazil
João P. Saldanha
Affiliation:
Programa de Pós-Graduação em Geologia, Programa de Formação em Recursos Humanos da Petrobras – PFRHPB 240, Departamento de Geologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil, 88040-900, Brazil

Abstract

The sponges may be the oldest group of Metazoa, with a long and successful evolutionary history. Despite their intermittent fossil record quality, the group has been considered reliable for paleoecological and paleobiogeographic analyses because they have inhabited various types of aquatic environments, forming a significant part of benthic communities. We have presented a detailed description of a new species from the genus Teganiella, Teganiella finksi new species, which expands the chronologic range and classifies the genus as endemic to the paleoequatorial regions of Laurentia associated with arid climate conditions linked to hypersaline periods. Combining the paleoecological and paleoenvironmental features of the Teganiella species, our findings also suggest a trend toward more closed-inlet conditions, which may be related to competition and/or specific habitat supplies, for example, heavy metals such as vanadium, zinc, and molybdenum.

UUID: http://zoobank.org/12901a63-7cd5-4207-ac7a-0ce12649fcaf

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bond, C., 1992, Continuous cell movements rearrange anatomical structures in intact sponges: Journal of Experimental Zoology, v. 263, p. 284302.Google Scholar
Botting, J.P., and Muir, L.A., 2013, Spicule structure and affinities of the Late Ordovician hexactinellid-like sponge Cyathophycus loydelli (Llanfawr Mudstones Lagerstätte, Wales): Lethaia, v. 46, p. 454469.Google Scholar
Botting, J.P., Zhang, Yuandong, and Muir, L.A., 2017, Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution: Scientific Reports, v. 7, 5286, doi:10.1038/s41598-017-05604-6.Google Scholar
Burger, A.M., and Wier, C.E., 1970, Carbondale Group, in Shaver, R.H. et al. , eds., Compendium of Rock-Unit Stratigraphy in Indiana: Indiana Geological Survey Bulletin 43, p. 32–33.Google Scholar
Burger, A.M., and Wier, C.E., 1986, Carbondale Group, in Shaver, R.H. et al. , eds., Compendium of Paleozoic Rock-Unit Stratigraphy in Indiana—A revision: Indiana Geological Survey Bulletin 59, p. 27.Google Scholar
Carballo, J.L., and Bell, J.J., 2017, Climate change and sponges: An Introduction, in Carballo, J.L., and Bell, J.J., eds, Climate Change, Ocean Acidification and Sponges: Springer, v. 1, p. 113.Google Scholar
Carrera, M.G., and Rigby, J.K., 1999, Biogeography of Ordovician sponges: Journal of Paleontology, v. 73, p. 2637.Google Scholar
Coveney, R.M., 1977, Spharelite enrichments in Kansas City Group shales: Geological Society of America, Abstracts with Programs, v. 79, no. 7, p. 938.Google Scholar
Coveney, R.M. Jr., and Martin, S.P., 1983, Molybdenum and other heavy metals of the Mecca Quarry and Logan Quarry shales: Economic Geology, v. 78, p. 132149.Google Scholar
De Geoeij, J.M., Moodley, L., Houtekamer, M., Carballeira, N.M., and van Duyl, F.C., 2008, Tracing C-13-enriched dissolved and particulate organic carbon in the bacteria containing coral reef sponge Halisarca caerulea: evidence for DOM feeding: Limnology and Oceanography, v. 53, p. 13761386.Google Scholar
de Laubenfels, M.W., 1955, Porifera, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part E, Archaeocyatha and Porifera: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. E21E112.Google Scholar
Delecat, S., Arp, G., and Reitner, J., 2011, Aftermath of the Triassic-Jurassic boundary crisis: Spiculite formation on drowned Triassic Steinplatte reefslope by communities of hexactinellid sponges (Northern Calcareous Alps, Austria), in Reitner, J., Queric, N.V., and Arp, G., eds., Advances in Stromatolite Geobiology: Berlin, Springer, p. 355390.Google Scholar
Evans, J.K., 1967, Depositional environment of a Pennsylvanian black shale (Heebner) in Kansas and adjacent shales [PhD thesis]: Houston, Rice University, 162 p.Google Scholar
Finks, R.M., 1983, Fossil Hexactinellida, in Broadhead, T.W., ed., Sponges and Spongiomorphs: Notes for a Short Course: Knoxville, University of Tennessee, p. 101115.Google Scholar
Finks, R.M., and Rigby, J.K., 2004, Paleozoic hexactinellid sponges, in Kaessler, R.L., ed., Treatise on Invertebrate Paleontology, Part E, Porifera (revised), Volume 3: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America and University of Kansas Press, p. 319448.Google Scholar
Grant, R.E., 1836, Animal Kingdom, in Todd, R.B., ed., The Cyclopaedia of Anatomy and Physiology, Volume 1: London, Longmans, Green, p. 1813.Google Scholar
Grogan, E.D., and Lund, R., 2002, The geological and biological environment of the Bear Gulch Limestone (Mississippian of Montana, USA) and a model for its deposition: Geodiversitas, v. 24, p. 295315.Google Scholar
Heckel, P.H., 1977, Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America: AAPG Bulletin, v. 61, p. 10451068.Google Scholar
Ilan, M., Gugel, J., and Van Soest, R.W.M., 2004, Taxonomy, reproduction and ecology of new and known Red Sea sponges: Sarsia, v. 89, p. 388410.Google Scholar
Jiménez, E., and Ribes, M., 2007, Sponge as a source of dissolved inorganic nitrogen: Nitrification mediated by temperate sponge: Limnology and Oceanography, v. 52, p. 948958.Google Scholar
Keren, R., Mayzel, B., Lavy, A., Polishchuk, I., Levy, D., Fakra, S.C., Pokroy, B., and Ilan, M., 2017, Sponge-associated bacteria mineralize arsenic and barium on intracellular vesicles: Nature Communications, v. 8, 14393, doi:10.1038/ncomms14393.Google Scholar
Li, L., Feng, H., Janussen, D., and Reitner, J., 2015, Unusual deep water sponge assemblage in South China—Witness of the end-Ordovician mass extinction: Scientific Reports, v. 5, 16060, doi:10.1038/serp16060.Google Scholar
Lund, R., Greenfest-Allen, E., and Grogan, E.D., 2012, Habitat and diversity of the Bear Gulch Fish: Life in a 318 million year old marine Mississippian bay: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 342–343, p. 116.Google Scholar
Magnall, J.M., Gleeson, S.A., Stern, R.A., Newton, R.J., Poulton, S.W., and Paradis, S., 2016, Open system sulphate reduction in a diagenetic environment—Isotopic analysis of barite (δ34S and δ18O) and pyrite (δ34S) from the Tom and Jason Late Devonian Zn–Pb–Ba deposits, Selwyn Basin, Canada: Geochimica et Cosmochimica Acta, v. 180, p. 146163.Google Scholar
Mohamed, N.M., Saito, K., Tal, Y., and Hill, R.T., 2010, Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges: The ISME Journal, v. 4, p. 3848.Google Scholar
Muir, L.C., Botting, J.P., Carrera, M., and Beresi, M.S., 2013, Cambrian, Ordovician and Silurian non-stromatoporoid porifera, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography: Geological Society of London Memoir, v. 38, p. 81–95.Google Scholar
Muir, L.C., Botting, J.P., and Beresi, M.S., 2017, Lessons from the past: Sponges and the geological record, in Carballo, J.L., and Bell, J.J., eds., Climate Change, Ocean Acidification and Sponges, Volume 1: Cham, Switzerland, Springer, p. 1347.Google Scholar
Reid, R.H., 1958, Remarks on the Upper Cretaceous hexactinellida of County Antrim: The Irish Naturalists Journal, v. 12, p. 236268.Google Scholar
Rigby, K.J., 1986, The sponge fauna from the Mississippian Heath Formation of Central Montana, in Dutro, J.T., and Pfeffertkorn, H.W., eds., Proceedings of the 9th International Congress on Carboniferous Stratigraphy and Geology, Paleontology, Paleoecology, Paleogeography: Compte Rendu, v. 5, p. 443–456.Google Scholar
Rigby, J.K., and Bitter, P.V., 2005, Sponges and associated fossils from the Pennsylvanian Carbondale Formation of northwestern Illinois: Journal of Paleontology, v. 79, p. 460468.Google Scholar
Rigby, J.K., and Chatterton, B.D.E., 1989, Middle Silurian Ludlovian and Wendlockian sponges from Baillie-Hamilton and Cornwallis Islands, Arctic Canada: Geological Survey of Canada Bulletin, v. 391, p. 169.Google Scholar
Rigby, J.K., and Mehl, D., 1994, Middle Devonian Sponges from the Northern Simpson Park Range, Nevada: Brigham Young University Geological Studies, no. 40, p. 111153.Google Scholar
Rigby, J.K., and Webby, B.D., 1988, Late Ordovician sponges from the Malongulli Formation of central New South Wales, Australia: Palaeontographica Americana, v. 56, p. 1147.Google Scholar
Ritterbusch, K.A., Bottjer, D.J., Corsetti, F.A., and Rosas, S., 2014, New evidence on the role of siliceous sponges in ecology and sedimentary facies development in Eastern Panthalassa following the Triassic-Jurassic mass extinction: Palaios, v. 29, p. 652668.Google Scholar
Ritterbusch, K.A., Rosas, S., Corsetti, F.A., Bottjer, D.J, and West, A.J., 2015, Andean sponges reveal long-term benthic ecosystem shifts following the end-Triassic mass extinction: Paleogeography, Palaeoclimatology, Palaeoecology, v. 420, p. 193209.Google Scholar
Schultze, H.P., 2010, The late Middle Devonian fauna of Red Hill I, Nevada, and its paleobiogeographic implications: Fossil Record, v. 13, p. 285295.Google Scholar
Scotese, C.R., 2001, Atlas of Earth History, Volume 1, Palaeogeography: Arlington, Texas, PALEOMAP Project, 52 p.Google Scholar
Scotese, C.R., 2016, PALEOMAP PaleoAtlas for Gplates and the Paleodata Plotter Program: PALEOMAP Project, http://www.earthbyte.org/paleomap-paleoatlas-for-gplates, doi:10.13140/RG.2.2.34367.00166.Google Scholar
Vine, J.D., 1966, Element distribution in some shelf and eugeosynclinal black shales: U.S. Geological Survey Bulletin, v. 1214-E, p. 31.Google Scholar
von Bitter, P.H., and Merrill, G.K., 1998, Apparatus composition and structure of the Pennsylvanian conodont genus Gondolella based on assemblages from the Desmoinesian of northwestern Illinois, U.S.A.: Journal of Paleontology, v. 72, p. 112132.Google Scholar
Wanless, H.R., and Wright, C.R., 1978, Paleoenvironmental Maps of Pennsylvanian Rocks, Illinois Basin and Northern Midcontinent Region: Boulder, Geological Society of America Special Publication MC-23, 30 p.Google Scholar
Webby, B.D., 1980, Biogeography of Ordovician stromatoporoids: Palaeogeography, Palaeoclimatology and Palaeoecology, v. 32, p. 119.Google Scholar
White, D., 1898, Fossil flora of the Lower Coal Measures of Missouri: Monographs of the United States Geological Survey, v. 37, p. 1467.Google Scholar
Wicander, R., and Monroe, J.S., 2012, Historical Geology, Volume 7: Boston, Cengage Learning, 448 p.Google Scholar
Wier, C.E., 1950, Geology and mineral resources of the Jasonville quadrangle [MS thesis]: Bloomington, Indiana University, 84 p.Google Scholar
Wier, C.E., 1965, Stratigraphy of the Middle and Upper Pennsylvanian rocks in southwestern Indiana: Indiana Geological Survey Memorandum Report C-131, 194 p.Google Scholar
Wilkin, R.T., and Barnes, H.L., 1997, Formation processes of framboidal pyrite: Geochimica et Cosmochimica Acta, v. 61, 323339.Google Scholar
Witzke, B.J., 1990, Palaeoclimatic constraints for Palaeozoic palaeolatitudes of Laurentia and Euamerica, in McKerrow, W.S., and Scotese, C.R., eds., Palaeozoic Palaeogeography and Biogeography: Geological Society of London Memoir, v. 12, p. 5773.Google Scholar
Woodland, B.G., 1963, Chemical, spectrographic, and mineralogical analyses of Mecca and Logan Quarry shales, in Zangerl, R., and Richardson, E.S. Jr., The paleoecological history of two Pennsylvanian black shales: Fieldiana Geology Memoirs, v. 4, p. 95100.Google Scholar
Zangerl, R., and Richardson, E.S. Jr., 1963, The paleoecological history of two Pennsylvanian black shales: Fieldiana Geology Memoirs, v. 4, 1352.Google Scholar