Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-28T02:34:36.615Z Has data issue: false hasContentIssue false

Presentation of the 2012 Paleontological Society Medal to Bill Schopf

Published online by Cambridge University Press:  15 October 2015

David Bottjer*
Affiliation:
Department of Earth Sciences, USC, Los Angeles, CA 90089-0740

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
AWARDS
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bottjer, D. J. 2013. Presentation of the 2012 Paleontological Society Medal to J. William Schopf. Journal of Paleontology, 87:000000.CrossRefGoogle Scholar
Golden, S. S., Ishiura, M., Johnson, C. H., and Kondo, T. 1997. Cyanobacterial circadian rhythms. Annual Review of Plant Physiology and Plant Molecular Biology 1997, 48:327354.CrossRefGoogle ScholarPubMed
Harmer, S. L., Hogenesch, J. B., Straume, M., Chang, H-S., Han, B., Zhu, T., Wang, X., Kreps, J. A., and Kay, S. A. 2000. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 290:21102113.CrossRefGoogle ScholarPubMed
Hayes, J. M. 1990 . Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes. Advances in Organic Geochemistry, 1989:11151128.CrossRefGoogle Scholar
Holland, H. D. 2002. Volcanic gases, black smokers, and the Great Oxidation Event. Geochimica et Cosmochimica Acta, 66:38113826.CrossRefGoogle Scholar
Knauth, L. P. 2005. Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Palaeogeography Palaeoclimatology Palaeoecology, 219:5369.CrossRefGoogle Scholar
Kondo, T., Strayer, C. A., Kulkarni, R. D., Taylor, W., Ishiura, M., Golden, S. S., and Johnson, C. H. 1993. Circadian rhythms in prokaryotes: Luciferase as a reporter of circadian gene expression in cyanobacteria. Proceedings of the National Academy of Sciences USA, 90:56725676.CrossRefGoogle ScholarPubMed
Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H., Oyama, T., and Kondo, T. 2005. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414415.CrossRefGoogle ScholarPubMed
Robert, F., and Chaussidon, M. 2006. A palaeotemprature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443:969972.CrossRefGoogle ScholarPubMed
Schopf, J. W. 1979. Response for the award of the Paleontological Society Medal to James M. Schopf, October 24, 1978. Journal of Paleontology 53:770.Google Scholar
Shearman, L. P., Sriram, S., Weaver, D. R., Maywood, E. S., Chaves, I., Zheng, B., Kume, K., Lee, C. C., van der Horst, G. T. J., Hastings, M. H., and Reppert, S. M. 2000. Interacting molecular loops in the mammalian circadian clock. Science, 288:10131019.CrossRefGoogle ScholarPubMed
Susumu, S., Hayes, J. M., McTaggart, A. R., Evans, R. A., Leckrone, K. J., and Togasaki, R. K. 1997. Carbon isotopic fractionation associated with lipid biosynthesis by a cyanobacterium: Relevance for interpretation of biomarker records. Geochemica et Cosmochimica Acta 61:53795389.Google Scholar
Vanyo, J. P. and Awramik, S. M. 1985. Stromatolites and Earth-Sun-Moon dynamics. Precambrian Research, 29:121142.CrossRefGoogle Scholar
Wells, J. W. 1963. Coral growth and geochronometry. Science, 197:947950.Google Scholar
Williams, G. E. 1997. Precambrian length of day and the validity of tidal rhythmite paleotidal values. Geophysical Research Letters, 24:421424.CrossRefGoogle Scholar
Zahnle, K. and Walker, J. C. G. 1987. A constant daylength during the Precambrian Era? Precambrian Research, 37:95105.CrossRefGoogle ScholarPubMed