Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:01:11.988Z Has data issue: false hasContentIssue false

Reinterpretation of the Miocene Sea-Snake Egg Moniopterus Japonicus as a Boring of Rock-Boring Bivalve Lithophaga (Mytilidae: Mollusca)

Published online by Cambridge University Press:  20 May 2016

Takuma Haga
Affiliation:
1Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan,
Yukito Kurihara
Affiliation:
2Faculty of Education, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan,
Tomoki Kase
Affiliation:
3Department of Geology and Paleontology, National Museum of Nature and Science, 3-23-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan,

Abstract

The enigmatic fossil Moniopterus japonicus Hatai et al., 1974 from the early Middle Miocene Moniwa Formation of northern Japan has been described as the only known example of fossil sea-snake eggs and also as fossilized pupal chambers of a coleopteran insect. A reexamination of the holotype provides no evidence in support of these previous interpretations. Scanning electronic microscopy and computed tomography observations on the holotype reveal that the calcareous lining, previously interpreted as eggshell, is instead composed of irregular spherulitic prisms, thin in the middle and becoming thicker toward both ends. In addition to the elongate oval shape and the presence of an opening at the more pointed end, these observations strongly suggest that M. japonicus is a boring of the mytilid boring bivalve Lithophaga isolated from the host rock. This reinterpretation is further supported by the occurrence of similar isolated and in situ borings with Lithophaga shells within the type and a nearby locality. Regarding this fossil as an ichnofossil makes the generic name Moniopterus a junior synonym of Gastrochaenolites Leymerie, 1842 and the species name japonicus is a senior synonym of Gastrochaenolites torpedo Kelly and Bromley, 1984. G. torpedo should thus be replaced with Gastrochaenolites japonicus (Hatai et al., 1974).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barthel, K. W. 1982. Lithophaga obesa (Philippi) reef-dwelling and cementing pelecypod—A survey of its boring, p. 649659. In Gomez, C. E., Birkeland, R. W., Buddemeier, R. E., Johannes, J. A. Jr.Marsh, and Tsuda, R. T. (eds.), Proceedings of the 4th International Coral Reef Symposium. University of the Philippines, Manila, 1981, 2.Google Scholar
Basan, P. B. 1979. Trace fossil nomenclature: The developing picture. Palaeogeography, Palaeoclimatology, Palaeoecology, 28:143167.Google Scholar
Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikulás, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M., and Uchman, A. 2006. Names for trace fossils: A uniform approach. Lethaia, 39(3):265286.CrossRefGoogle Scholar
Blow, W. H. 1969. Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy, p. 199422. In Brönnimann, P. and Renz, H. H. (eds.), Proceedings of the First International Conference on Planktonic Microfossils. Geneva, 1967.Google Scholar
Boie, H. 1826. Merkmale einiger japanischer Lurche. Isis von Oken, 19:203216.Google Scholar
Brown, R. W. 1934. Celliforma spirifer, the fossil larval chambers of mining bees. Journal of the Washington Academy of Sciences, 24:532539.Google Scholar
Carter, J. G. 1978. Ecology and Evolution of the Gastrochaenacea (Mollusca, Bivalvia) with Notes on the Evolution of the Endolithic Habitat. Yale University Peabody Museum of Natural History, Bulletin, 41:192.Google Scholar
Carter, J. G. 1980a. Environmental and biological controls of bivalve shell mineralogy and microstructure, p. 69113. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum Press, New York and London.CrossRefGoogle Scholar
Carter, J. G. 1980b. Guide to bivalve shell microstructures, p. 645673. In Rhoads, and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms: Biological Records of Environmental Change. Plenum Press, New York and London.Google Scholar
Carter, J. G. 1990. Glossary of skeletal biomineralization, p. 609672. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume I. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G., and Clark, G. R. 1985. Classification and phylogenetic significance of molluscan shell microstructure, p. 5071. In Broadhead, T. W. (ed.), Mollusks. Notes for a short course. University of Tennessee Studies in Geology, 13.Google Scholar
Donovan, S. K., and Hensley, C. 2006. Gastrochaenolites Leymerie in the Cenozoic of the Antillean Region. Ichnos, 13(1):1119.Google Scholar
Fukuda, Y. 1985. SEM observation on the boring algae in the calcareous deposition of outer surface of shell and next wall of Lithophaga (Leiosolenus) curta (Lischke). Journal of Fossil Research, 17(2):5358. (In Japanese)Google Scholar
Genise, J. F., Mángano, M. G., Buatois, L. A., Laza, J. H., and Verde, M. 2000. Insect trace fossil associations in paleosols: The Coprinisphaera ichnofacies. Palaios, 15(1):4964.Google Scholar
Genise, J. F., Sciutto, J. C., Laza, J. H., González, M. G., and Bellosi, E. S. 2002. Fossil bee nests, coleopteran pupal chambers and tuffaceous paleosols from the Late Cretaceous Laguna Palacios Formation, Central Patagonia (Argentina). Palaeogeography, Palaeoclimatology, Palaeoecology, 177(3):215235.Google Scholar
Genise, J. F. 2004. Ichnotaxonomy and ichnostratigraphy of chambered trace fossils in palaeosols attributed to coleopterans, ants and termites, p. 419453. In McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society, London, Special Publication, 228.Google Scholar
Genise, J. F., Melchor, R. N., Bellosi, E. S., González, M. G., and Krause, M. 2007. New insect pupation chambers (Pupichnia) from the Upper Cretaceous of Patagonia, Argentina. Cretaceous Research, 28(3):545559.Google Scholar
Grellet-Tinner, G. 2006. Phylogenetic interpretation of eggs and eggshells: Implications for phylogeny of Palaeognathae. Alcheringa, 30(1):141182.CrossRefGoogle Scholar
Habe, T. 1977. Systematics of Mollusca in Japan. Bivalvia and Scaphopoda. Hokuryû-kan, Tokyo, 372 p. (In Japanese)Google Scholar
Haga, T., and Kase, T. 2008. Redescription of the deep-sea wood borer Neoxylophaga teramachii Taki & Habe, 1950 and its assignment to the genus Xyloredo (Bivalvia: Myoida: Pholadoidea) with comments on fossil Pholadoidea. The Veliger, 50(2):107119.Google Scholar
Hanley, S. 1844. Descriptions of new species of Mytilidae, Amphidesma and Odostomia. Proceedings of the Zoological Society of London, part 12, 132:1418.Google Scholar
Hatai, K., Masuda, K., and Noda, H. 1974. Marine fossils from the Moniwa Formation along the Natori river, Sendai, northeast Honshu, Japan, part 2. Problematica from the Moniwa Formation. Transaction and Proceedings of the Palaeontological Society of Japan, New Series, 95:364371.Google Scholar
Hirsch, K. F. 1996. Parataxonomic classification of fossil chelonian and gecko eggs. Journal of Vertebrate Paleontology, 16(4):752762.CrossRefGoogle Scholar
ICZN (International Commission for Zoological Nomenclature). 1999. International Code of Zoological Nomenclature (fourth edition). International Trust for Zoological Nomenclature, London, xx + 338. [Japanese text for the fourth edition, published by The Union of Japanese Societies for Systematic Zoology in 2000, Sapporo, xviii + 133.]Google Scholar
Ito, Y. 1994. Morphological variation of a rock-boring clam, Penitella kamakurensis (Yokoyama), and its relation to the hardness of the bored rock. Benthos Research, 47:2336.CrossRefGoogle Scholar
Itoigawa, J. 1963a. Some Miocene boring shells and their life tracks (“Lebens-spuren”) from the Mizunami group, Gifu Prefecture, Japan. Earth Science (Chikyu Kagaku), 67:116.Google Scholar
Itoigawa, J. 1963b. Miocene rock- and wood-boring bivalves and their burrows from the Mizunami group, central Japan. The Journal of Earth Science, Nagoya University, 11(1):101123, pls. 1-7.Google Scholar
Johnston, P. A., Eberth, D. A., and Anderson, P. K. 1996. Alleged vertebrate eggs from Upper Cretaceous redbeds, Gobi Desert, are fossil insect (Coleoptera) pupal chambers: Fictovichnus new ichnogenus. Canadian Journal of Earth Sciences, 33(4):511525.Google Scholar
Jones, B. and Pemberton, S. G. 1988. Lithophaga borings and their influence on the diagenesis of corals in the Pleistocene Ironshore Formation of Grand Cayman Island, British West Indies. Palaios, 3(1):321.Google Scholar
Kelly, S. R. A. and Bromley, R. G. 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27(4):793807.Google Scholar
Kitamura, N., Ishii, T., Sangawa, A., and Nakagawa, H. 1986. Geology of the Sendai District. With geological sheet map at 1:50,000. Geological Survey of Japan, 134 p.Google Scholar
Kleemann, K. H. 1980. Boring bivalves and their host corals from the Great Barrier Reef. Journal of Molluscan Studies, 46(1):1354.Google Scholar
Kuroda, T., Habe, T., and Oyama, K. 1971. The sea shells of Sagami Bay. Maruzen, Tokyo. xix + 741p. (Japanese text), 121 pls., 489p. (English text), 51p. (index, map)Google Scholar
Kurozumi, T. 2000. Family Mytilidae, p. 862877. In Okutani, T. (ed.), Marine mollusks in Japan. Tokai University Press, Tokyo.Google Scholar
Lawson, R., Slowinski, J. B., Crother, B. I., and Burbrink, F. T. 2005. Phylogeny of the Colubroidea (Serpentes): New evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 37(2):581601.Google Scholar
Laza, J. H. 2006. Dung-beetle fossil brood balls: The ichnogenera Coprinisphaera Sauer and Quirogaichnus (Coprinisphaeridae). Ichnos, 13(4):217235.Google Scholar
Leymerie, M. A. 1842. Suite de Mémoire sur le terrain Crétacé de département de l'Aube. Memoire de la Société Géologique de France, 5:134.Google Scholar
Lischke, C. E. 1874. Diagnosen neuer Meeres-Conchylien von Japan. Jahrbücher der Deutschen Malakozoologischen Gesellschaft, 1:5759.Google Scholar
Masuda, K. 1967. Sandpipes penetrating igneous rocks in the environs of Sendai, Japan. Transaction and Proceedings of the Palaeontological Society of Japan, New Series, 72:351362, pls. 38-39.Google Scholar
Masuda, K. 1969. Molluscan fauna of the Moniwa Formation, Sendai. Fossils, 17:2940. (In Japanese)Google Scholar
Masuda, K. and Matsushima, M. 1969. On the bivalves boring into volcanic rock at Cape Manazuru, Kanagawa Prefecture, Japan. Venus, 28(2):101109.Google Scholar
Mikhailov, K. E. 1997. Fossil and Recent eggshell in amniotic vertebrates: Fine structure, comparative morphology and classification. Special Papers in Palaeontology, 56:180.Google Scholar
Mori, A. 1994. Sea snakes and their life. Midori-ishi, 5:2326. (In Japanese)Google Scholar
Narchi, W. 1975. Functional morphology of a new Petricola (Mollusca Bivalvia) from the littoral of São Paulo, Brazil. Proceedings of the Malacological Society of London, 41:451465.Google Scholar
Noda, H. 1994. Introduction to study of Japanese trace fossils. Sasaki-Printing and Publishing Co. Ltd., Sendai, Japan, 294 p. (in Japanese)Google Scholar
Nomura, S. 1940. Molluscan fauna of the Moniwa shell bed exposed along the Natori-gawa in the vicinity of Sendai, Miyagi Prefecture, Japan. Science Reports of the Tohoku Imperial University, 2nd Series, Geology, 21(1):146, pls. 1-3.Google Scholar
Nomura, S., and Maeda, H. 2008. Significance of autochthonous fossil barnacles from the Miocene Natori Group at the Moniwa-Goishi area, northeast Japan. Paleontological Research, 12(1):6379.Google Scholar
Oda, M., and Sakai, T. 1977. Microbiostratigraphy of the lower to middle part of the Hatatate Formation, Sendai, Japan, p. 441456. In The Committee for Retirement Commemoration of Professor Huzioka Kazuo (ed.), Professor Huzioka Kazuo Memorial Volume. Sasaki-Printing and Publishing Co. Ltd., Sendai.Google Scholar
Oda, M., Hasegawa, S., Honda, N., Maruyama, T., and Funayama, M. 1984. Integrated biostratigraphy of planktonic foraminifera, calcareous nannofossils, radiolarians and diatoms of Middle and Upper Miocene sequences of central and northeast Honshu, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 46(1-3):5369.Google Scholar
Philippi, R. A. 1847. Testaceorum novorum centuria (continuatio). Zeitschrift für Malakozoologie, August 1847:113127.Google Scholar
Pickerill, R. K. 1994. Nomenclature and taxonomy of invertebrate trace fossils, p. 342. In Donovan, S. K. (ed.), The Paleobiology of Trace Fossils. The John Hopkins University Press, Baltimore.Google Scholar
Retallack, G. J. 1984. Trace fossils of burrowing beetles and bees in an Oligocene paleosol, Badlands National Park, South Dakota. Journal of Paleontology, 58(2):571592.Google Scholar
Röding, P. F. 1798. Museum Boltenianum sive Catalogus cimeliorum e tribus regnis naturae quae olim collegerat Joa. Fried. Bolten: Pars Secunda continens Conchylia sive Testacea univalvia, bivalvia et multivalvia. Johan, Christi, Trappii, Hamburg. 199 + ii p.Google Scholar
Roselli, F. L. 1938. Apuntes de geología y paleontología uruguaya. Sobre insectos del Cretácico del Uruguay o descubrimiento de la Sociedad Amigos de las Ciencias Naturales ‘Kraglievich-Fontana’, 1:72102.Google Scholar
Roselli, F. L. 1987. Paleoicnología: nidos de insectos fósiles de la cubertura Mesozoica del Uruguay. Publicaciones del Museo Municipal de Nueva Palmira, 1(1):156.Google Scholar
Sanders, K. L., and Lee, M. S. Y. 2008. Molecular evidence for a rapid late-Miocene radiation of Australasian venomous snakes (Elapidae, Colubroidea). Molecular Phylogenetics and Evolution, 46(3):11801188.Google Scholar
Sato, Y. 1991. Paleontological study of molluscan assemblages of the Miocene Moniwa Formation, northeast Japan and description of their Pectinidae. Geological Survey of Japan, Report, 272:1249.Google Scholar
Sauer, W. 1955. Coprinisphaera ecuadoriensis, un fósil singular del Pleistoceno. Boletín del Instituto de Ciencias Naturales, Universidad Central del Ecuador, 1(2):123129, pls. 1-3.Google Scholar
Savazzi, E. 1999. Chapter 17, boring, nestling and tube-dwelling bivalves, p. 205237. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. John Wiley & Sons, Chichester, New York, Weinheim, Brisbane, Singapore and Toronto.Google Scholar
Savazzi, E. 2005. The function and evolution of lateral asymmetry in boring endolithic bivalves. Paleontological Research, 9(2):169187.Google Scholar
Scanlon, J. D., Lee, M. S. Y., and Archer, M. 2003. Mid-Tertiary elapid snakes (Squamata, Colubroidea) from Riversleigh, northern Australia: early steps in a continent-wide adaptive radiation. Geobios, 36(05):573601.CrossRefGoogle Scholar
Taylor, P. D., and Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62(1/2):1103.Google Scholar
Tsukamoto, Y. 1932. Notes on Lithophaga curta (Lischke). The Venus, 3(05):260263. (In Japanese)Google Scholar
Valenciennes, A. 1846. Mollusques, 27 pls. [without text]. In Du Petit-Thouars, A., Voyage autour du monde sur la frégate La Vénus, pendant les années 1836-1839. Atlas de Zoologie. Gide and Cie, Paris.Google Scholar
Yonge, C. M. 1955. Adaptation to rock boring in Botula and Lithophaga (Lamellibranchia, Mytilidae) with a discussion on the evolution of this habitat. Quarterly Journal of Microscopical Science, 96(3):383410.Google Scholar