Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:33:12.611Z Has data issue: false hasContentIssue false

Scale microfossils from the mid-Neoproterozoic Fifteenmile Group, Yukon Territory

Published online by Cambridge University Press:  20 May 2016

Phoebe A. Cohen
Affiliation:
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Department of Geosciences, Williams College, Williamstown, MA 01267, USA
Andrew H. Knoll
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

Abstract

Microscopic phosphatic scales are found in limestones and cherts from the 812–717 million year old Fifteenmile Group of the Yukon Territory. These enigmatic microfossils, which to date have not been identified in any other locality, display a diversity of intricate morphologies. Here we describe six new genera containing 17 new species of scale microfossils obtained from macerated limestone. We also revise existing taxa described originally from chert thin sections and now additionally freed from limestone by acid dissolution. New taxa described here are: Archaeoxybaphon serratacapacis n. sp., Archeoxybaphon serratapusilla n. sp., Paleoscutula inornata n. gen. n. sp., Paleoscutula serrata n. gen. n. sp., Paleoscutula convocationis n. gen n. sp., Hexacatillus allmonii n. gen. n. sp., Hexacatillus retetantillus n. sp., Quadrireticulum allisoniae n. gen. n. sp., Quadrireticulum palmaspinosum n. gen. n. sp., Circidentatus pistricis n. gen. n. sp., Circidentatus variodentatus n. gen. n. sp., Ospercapatera awramikii n. gen. n. sp., Circitorquis soccus n. gen. n. sp., Paleohexadictyon alexandrae n. sp., Paleomegasquama arctoa n. sp., Petasisquama petasus n. sp., and Thorakidictyon circireticulum n. gen. n. sp. Taxa described or amended here are Characodictyon skolopium Allison and Hilgert, 1986, Paleohexadictyon myriotrematum Allison and Hilgert, 1986, Archeoxybaphon polykeramoides (Allison and Hilgert, 1986) emend., Paleohexadictyon litosum (Allison and Hilgert, 1986) emend., and Thorakidictyon myriocanthum (Allison and Hilgert, 1986) n. comb. Many eukaryotic clades include species with surficial scales but none provides a close morphological analog to the Fifteenmile scales. Nonetheless, comparative and functional morphology suggest that the diversification of heavily armored and morphologically complex cell-coverings records a changing ecological landscape in Neoproterozoic seas.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, C. W. and Moorman, M. A. 1973. Microbiota from the late Proterozoic Tindir Group, Alaska. Geology, 1:6568.Google Scholar
Allison, C. W. and Hilgert, J. W. 1986. Scale microfossils from the early Cambrian of Northwest Canada. Journal of Paleontology, 60:9731015.Google Scholar
Allison, C. W. and Awramik, S. M. 1989. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tinder Group rocks, Northwest Canada. Precambrian Research, 43:253294.Google Scholar
Bartol, M., Pavšič, J., Dobnikar, M., and Bernasconi, S. M. 2008. Unusual Braarudosphaera bigelowii and Micrantholithus vesper enrichment in the Early Miocene sediments from the Slovenian Corridor, a seaway linking the Central Paratethys and the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 267:7788.Google Scholar
Becker, B., Marin, B., and Melkonian, M. 1994. Structure, composition, and biogenesis of prasinophyte cell coverings. Protoplasma, 181:233244.CrossRefGoogle Scholar
Berney, C. and Pawlowski, J. 2006. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proceedings of the Royal Society B: Biological Sciences, 273:18671872.Google Scholar
Bosak, T., Macdonald, F., Lahr, D., and Matys, E. 2011a. Putative Cryogenian ciliates from Mongolia. Geology, 39:11231126.Google Scholar
Bosak, T., Lahr, D. J. G., Pruss, S. B., Macdonald, F. A., Gooday, A. J., Dalton, L., and Matys, E. D. 2011b. Possible early foraminiferans in post-Sturtian (716–635 Ma) cap carbonates. Geology, 40:6770.Google Scholar
Buckland-Nicks, J. 1993. Hull cupules of chiton eggs: parachute structures and sperm focusing devices? The Biological Bulletin, 184:269276.Google Scholar
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic–Phanerozoic transition. Paleobiology, 23:247262.Google Scholar
Van Cappellen, P. and Ingall, E. D. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9:677692.Google Scholar
Cavalier-Smith, T. and von der Heyden, S. 2007. Molecular phylogeny, scale evolution and taxonomy of centrohelid heliozoa. Molecular Phylogenetics and Evolution, 44:11861203.CrossRefGoogle ScholarPubMed
Cohen, P. A., Knoll, A. H., and Kodner, R. B. 2009. Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proceedings of the National Academy of Sciences, 106:65196524.Google Scholar
Cohen, P. A., Schopf, J. W., Butterfield, N. J., Kudryavtsev, A. B., and Macdonald, F. A. 2011. Phosphate biomineralization in mid-Neoproterozoic protists. Geology, 39:539542.Google Scholar
Creveling, J., Johnston, D. T., and Knoll, A. H. 2011. Geochemical controls on phosphatization taphonomy in the Middle Cambrian. Geological Society of America, Abstracts with Programs, 43 (5):53.Google Scholar
Cross, L. and Fortuno, J. M. 2002. Atlas of northwestern Mediterranean coccolithophores. Scientia Marina, 66:7182.Google Scholar
Dayel, M. J., Alegado, R. A., Fairclough, S. R., Levin, T. C., Nichols, S. A., McDonald, K., and King, N. 2011. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Developmental Biology, 357:7382.Google Scholar
Deflandre, G. 1936. Etude monographique sur le genre Nebela Leidy (Rhizopoda-Testacea). Annals of Protistolology, 5:201286.Google Scholar
Domozych, D., Wells, B., and Shaw, P. 1991. Basket sclaes of the green-ala, Mesostigma viride—chemistry and ultrastructure. Journal of Cell Science, 100:397407.Google Scholar
Douglas, M. and Smol, J. 1987. Siliceous protozoan plates in lake sediments. Hydrobiologia, 154:1323.Google Scholar
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:1091097.CrossRefGoogle ScholarPubMed
Foissner, W. 2005. Two new “flagship” ciliates (Protozoa, Ciliophora) from Venezuela: Sleighophrys pustulata and Luporinophrys micelae. European Journal of Protistology, 41:99117.Google Scholar
Hamm, C. E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K., and Smetacek, V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 421:841843.Google Scholar
Hampl, V., Hug, L., Leigh, J. W., Dacks, J. B., Lang, B. F., Simpson, A. G. B., and Roger, A. J. 2009. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups.” Proceedings of the National Academy of Sciences, 106:38593864.Google Scholar
Hansen, B., Bjornsen, P. K., and Hansen, P. J. 1994. The size ratio between planktonic predators and their prey. Limnology and Oceanography, 39:395403.CrossRefGoogle Scholar
Hedley, R., Ogden, C., and Mordan, N. 1977. Biology and Fine Structure of Cryptodifflugia Oviformis (Rhizopdea: Protozoa). British Museum (Natural History), London, 30p.Google Scholar
Henderiks, J. 2008. Coccolithophore size rules—Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths. Marine Micropaleontology, 67:143154.Google Scholar
Henderiks, J. and Pagani, M. 2007. Refining ancient carbon dioxide estimates: significance of coccolithophore cell size for alkenone-based pCO2 records. Paleoceanography, 22:PA3202, 12p.Google Scholar
Henderiks, J. and Pagani, M. 2008. Coccolithophore cell size and the Paleogene decline in atmospheric CO2. Earth and Planetary Science Letters, 269:576584.Google Scholar
Ingall, E. and Jahnki, R. 1994. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochimica et Cosmochimica Acta, 58:25712575.Google Scholar
Kaufman, A. J., Knoll, A. H., and Awramik, S. M. 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions; upper Tindir Group, northwestern Canada, as a test case. Geology, 20:181185.Google Scholar
Keeling, P., Burger, G., Durnford, D., Lang, B., Lee, R., Pearlman, R., Roger, A., and Gray, M. 2005. The tree of eukaryotes. Trends in Ecology and Evolution, 20:670676.Google Scholar
Knappertsbusch, M. 2000. Morphological evolution of the coccolithophorid Calcidiscus leptoporus from the early Miocene to Recent. Journal of Paleontology, 74:712730.Google Scholar
Knoll, A. H. 2003. Biomineralization and evolutionary history. Reviews in Mineralogy and Geochemistry, 54:329356.Google Scholar
Knoll, A., Javaux, E., Hewitt, D., and Cohen, P. 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361:10231038.CrossRefGoogle ScholarPubMed
Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K., and Mann, D. G. 2007. The origin and evolution of the diatoms: their adaptation to a planktonic existence, p. 207249. InFalkowski, P. and Knoll, A. H.(eds.), The Evolution of Primary Producers in the Sea. Elsevier, Burlington.Google Scholar
Lara, E., Heger, T. J., Mitchell, E. A. D., Meisterfeld, R., and Ekelund, F. 2007. SSU rRNA reveals a sequential increase in shell complexity among the euglyphid testate Amoebae (Rhizaria: Euglyphida). Protist, 158:229237.CrossRefGoogle ScholarPubMed
Leroi, J. and Hallegraeff, G. 2006. Scale-bearing nanoflagellates from southern Tasmanian coastal waters, Australia. II. Species of Chrysophyceae (Chrysophyta), Prymnesiophyceae (Haptophyta, excluding Chrysochromulina) and Prasinophyceae (Chlorophyta). Botanica Marina, 49:216235.Google Scholar
Lewis, L. A. and McCourt, R. M. 2004. Green algae and the origin of land plants. American Journal of Botany, 91:15351556.CrossRefGoogle ScholarPubMed
Losic, D., Rosengarten, G., Mitchell, J. G., and Voelker, N. H. 2006. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. Journal of Nanoscience and Nanotechnology, 6:982989.Google Scholar
Macdonald, F. A., Smith, E. F., Strauss, J. V., Cox, G. M., Halverson, G. P., and Roots, C. F., 2011. Neoproterozoic and early Paleozoic correlations in the western Ogilvie Mountains, Yukon, p. 161182. InMacFarlane, K. E., Weston, L. H., and Blackburn, L. R.(eds.), Yukon Exploration and Geology 2010. Yukon Geological Survey, Whitehorse.Google Scholar
Macdonald, F. A., Schmitz, M. D., Crowley, J. L., Roots, C. F., Jones, D. S., Maloof, A. C., Strauss, J. V., Cohen, P. A., Johnston, D. T., and Schrag, D. P. 2010a. Calibrating the Cryogenian. Science, 327:12411243.Google Scholar
Macdonald, F. A., Cohen, P. A., Dudas, F. O., and Schrag, D. P. 2010b. Early Neoproterozoic scale microfossils in the lower Tindir Group of Alaska and the Yukon Territory. Geology, 38:143146.Google Scholar
Meyer, J. L., McCall, J. T., and Smith, L. H. 1974. Inhibition of calcium phosphate crystallization by nucleoside phosphates. Calcified Tissue International, 15:287293.Google Scholar
Moestrup, O. and Walne, P. L. 1979. Studies on scale morphogenesis in the Golgi apparatus of Pyramimonas tetrarhynchus (Prasinophyceae). Journal of Cell Science, 36:437459.Google Scholar
Nicholls, K. and Durrschmidt, M. 2008. Scale structure and taxonomy of some species of Raphidocystis, Raphidiophrys, and Pompholyxophrys (Heliozoea) including descriptions of six new taxa. Canadian Journal of Zoology, 18:19441961.Google Scholar
Ogden, C. and Hedley, R. 1980. An Atlas of Freshwater Testate Amoebae. Oxford University Press, Oxford, 282p.Google Scholar
Okamoto, N., Chantangsi, C., Horák, A., Leander, B. S., and Keeling, P. J. 2009. Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS ONE, 4 (9):e7080.Google Scholar
Parfrey, L. W., Grant, J., Tekle, Y. I., Lasek-Nesselquist, E., Morrison, H. G., Sogin, M. L., Patterson, D. J., and Katz, L. A. 2010. Broadly Sampled multigene analyses yield a well-resolved eukaryotic tree of life. Systematic Biology, 59:518533.Google Scholar
Parfrey, L., Lahr, D., Knoll, A. H., and Katz, L. A. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences, 108:1362413629.Google Scholar
Patterson, D. and Durrschmidt, M. 1988. The formation of siliceous scales by Raphidiophrys ambigua (Protista, Centroheliozoa). Journal of Cell Science, 91:3339.Google Scholar
Plavansky, N. J., Rouxel, O. J., Bekker, A., Lalonde, S. V., Konhauser, K. O., Reinhard, C. T., and Lyons, T. W. 2010. The evolution of the marine phosphate reservoir. Nature, 467:10881090.Google Scholar
Porter, S. 2011. The rise of predators. Geology, 39:607608.Google Scholar
Porter, S., Meisterfeld, R., and Knoll, A. 2003. Vase-shaped microfossils from the Neoproterozoic Chuar Group, Grand Canyon: a classification guided by modern testate amoebae. Journal of Paleontology, 77:409429.Google Scholar
Preisig, H. 1994. Siliceous structures and silicification in flagellated protists. Protoplasma 181:2942.Google Scholar
Raven, J. A. 1983. The transport and function of silicon in plants. Biological Reviews, 58:179207.CrossRefGoogle Scholar
Raven, J. A. and Knoll, A. H. 2010. Non-Skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiology Journal, 27:572584.Google Scholar
Raven, J. A. and Waite, A. M. 2004. The evolution of silicification in diatoms: Inescapable sinking and sinking as escape? New Phytologist, 162:4561.Google Scholar
Runnegar, B. 1985. Shell microstructures of Cambrian molluscs replicated by phosphate. Alcheringa: An Australasian Journal of Palaeontology, 9:245257.Google Scholar
Sarjeant, W., Lacalli, T., and Gaines, G. 1987. The cysts and skeletal elements of dinoflagellates: Speculations on the ecological causes for their morphology and development. Micropaleontology, 33:136.Google Scholar
Sikes, C. S. and Wilbur, K. M. 1982. Functions of Coccolith Formation. Limnology and Oceanography, 27:1826.Google Scholar
Summons, R. E. and Walter, M. R. 1990. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science, 290A:212244.Google Scholar
Vermeij, G. J. 1989. The origin of skeletons. Palaios, 4:585589.Google Scholar
Weiner, S. and Dove, P. M. 2003. An overview of biomineralization processes and the problem of the vital effect. Reviews in Mineralogy and Geochemistry, 54:129.Google Scholar
Wujek, D. and Bicudo, C. 2004. Scale-bearing chrysophytes from the State of São Paulo, Brazil, 2: additions to the flora. Brazilian Journal of Biology, 64:915918.CrossRefGoogle Scholar
Yao, X., Han, J., and Jiao, G. 2011. Early Cambrian epibolic gastrulation: A perspective from the Kuanchuanpu Member, Dengying Formation, Ningqiang, Shaanxi, South China. Gondwana Research, 20:844851.Google Scholar
Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G., and Bhattacharya, D. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Molecular and Biological Evolution, 21:809818.Google Scholar
Yoshida, M., Noel, M., Nakayama, T., Naganuma, T., and Inouye, I. 2006. A haptophyte bearing siliceous scales: ultrastructure and phylogenetic position of Hyalolithus neolepis gen. et sp. nov. (Prymnesiophyceae, Haptophyta). Protist, 157:213234.Google Scholar
Young, J. R., Davis, S. A., Bown, P. R., and Mann, S. 1999. Coccolith ultrastructure and biomineralisation. Journal of Structural Biology, 126:195215.Google Scholar
Young, J. 1994. Functions of coccoliths, p. 6382. InCoccolithophores. Cambridge University Press, Cambridge, United Kingdom.Google Scholar