Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T03:39:29.947Z Has data issue: false hasContentIssue false

Life in the Late Paleozoic ice age: trace fossils from glacially influenced deposits in a Late Carboniferous fjord of western Argentina

Published online by Cambridge University Press:  14 July 2015

Elizabeth R. Schatz
Affiliation:
1Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon SK S7N 5E2, Canada, , ,
María Gabriela Mángano
Affiliation:
1Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon SK S7N 5E2, Canada, , ,
Luis A. Buatois
Affiliation:
1Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon SK S7N 5E2, Canada, , ,
Carlos Oscar Limarino
Affiliation:
2Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina,

Abstract

The early Late Carboniferous rocks of the Guandacol Formation in western Argentina preserve the glacial to postglacial transition. In the study area, this unit has been divided in three intervals: 1) a lower diamictitic interval; 2) a middle interval chiefly composed of mudstone, and 3) an upper sandstone-dominated interval. The lower interval records infill of a fjord incised into the underlying Ordovician limestone. The middle and upper intervals reflect postglacial sedimentation. Four ichnotaxa, occurring as both discrete and compound trace fossils, are documented from the lower and middle intervals of the Guandacol Formation. Diplopodichnus biformis and Cruziana diplopoda n. isp. occur in the thinly bedded stratified diamictite in the upper section of the lower interval. These deposits record sedimentation from debris flows with dropstones reflecting overprinting of ice-rafting and rain-out processes. Cruziana cf. problematica and Rusophycus carbonarius are present in very-fine to fine-grained sandstone layers interbedded with dropstone-bearing mudstone in the lower section of the middle interval. These deposits record the interplay of suspension fall-out sedimentation, ice-rafting, rain-out processes, and storm waves. The presence of linguliformean brachiopods in coeval beds nearby strongly suggests marine influence and that brackish-water conditions prevailed during the early phase of the transgression. Harsh paleoenvironmental conditions may explain the small size of the trace fossils and the low ichnodiversity in comparison to that expected in fully marine environments. The morphology of the trace fossils as bilobate ridges and furrows ornamented with scratch marks indicates that the structures were produced by arthropods, most likely trilobites and/or notostracans. Although the possibility that different ichnotaxa have resulted from changes in burrowing behaviors can not be completely disregarded, the fact that distinct Cruziana ichnospecies display non-overlapping facies distribution may suggest their production by different arthropods.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G. and Buatois, L. A. 1991. Trazas fósiles del Paleozoico superior continental argentino. Ameghiniana, 28:89108.Google Scholar
Aceñolaza, F. G. and Buatois, L. A. 1993. Nonmarine perigondwanic trace fossils from the late Paleozoic of Argentina. Ichnos, 2:183201.CrossRefGoogle Scholar
Aitken, A. E. 1990. Fossilization potential of artic fjord and continental shelf benthic macrofaunas, p. 155176. In Dowdeswell, J. A. and Scourse, J. E. (eds.), Glacimarine environments: Processes and sediments. Geological Society Special Publication 53.Google Scholar
Amos, A. J., Campbell, K. S. W., and Goldring, R. 1960. Australosutura gen. nov. (Trilobita) from the Carboniferous of Australia and Argentina. Palaeontology, 3:227236.Google Scholar
Azcuy, C. and Morelli, J. 1970. Geología de la comarca Paganzo-Amaná. El Grupo Paganzo. Formaciones que lo componen y sus relaciones. Revista de la Asociación Geológica Argentina, 25:405429.Google Scholar
Brady, L. F. 1947. Invertebrate tracks from the Coconino Sandstone of northern Arizona. Journal of Paleontology, 21:466472.Google Scholar
Bromley, R. G. and Asgaard, U. 1972. Notes on Greenland trace fossils. I—III. Grønlands Geologiske Undersøgelse Rapport 49, 30 p.CrossRefGoogle Scholar
Bromley, R. G. and Asgaard, U. 1979. Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 55:3980.CrossRefGoogle Scholar
Buatois, L. A. and Mángano, M. G. 2003. Caracterización icnológica y paleoambiental de la localidad tipo de Orchesteropus atavus, Huerta de Huachi, provincia de San Juán, Argentina: implicancias en el debate sobre los ambientes de sedimentación en el Carbonífero de Precordillera. Ameghiniana, 40:5370.Google Scholar
Buatois, L. A. and Mángano, M. G. 2007. Invertebrate ichnology of continental freshwater environments, p. 285323. In Miller, W. III (ed.), Trace Fossils: Concepts, Problems and Prospects. Elsevier, Oxford, UK.CrossRefGoogle Scholar
Buatois, L. A. and Mángano, M. G. 2011. Ichnology: The role of organism-substrate interactions in space and time. Cambridge University Press.CrossRefGoogle Scholar
Buatois, L. A., Mángano, M. G., Maples, C. G., and Lanier, W. P. 1998. Taxonomic reassessment of the ichnogenus Beaconichnus and additional examples from the Carboniferous of Kansas, U.S.A. Ichnos, 5:287302.CrossRefGoogle Scholar
Buatois, L. A., Mángano, M. G., and Netto, R. G. 2001. Paleoecosistemas anactualísticos vinculados a la glaciación gondwánica: evidencias en el Paleozoico superior del oeste de Argentina y sur de Brasil. Segundo Simposio Argentino Paleozoico superior, Resúmenes, Trelew, 3 p.Google Scholar
Buatois, L. A., Gingras, M. K., MacEachern, J., Mángano, M. G., Zonneveld, J.-P., Pemberton, S. G., Netto, R. G., and Martin, A. J. 2005. Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios, 20:321347.CrossRefGoogle Scholar
Buatois, L. A., Netto, R. G., and Mángano, M. G. 2010. Ichnology of late Paleozoic postglacial transgressive deposits in Gondwana: Reconstructing salinity conditions in coastal ecosystems affected by strong meltwater discharge. In López-Gamundí, O. R. and Buatois, L. A. (eds.), late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper 468:149173.CrossRefGoogle Scholar
Buatois, L. A., Netto, R. G., Mángano, M. G., and Balistieri, P. R. 2006. Extreme freshwater release during the late Paleozoic Gondwana deglaciation and its impact on coastal ecosystems. Geology, 34:10211024.CrossRefGoogle Scholar
Corner, G. D. and Fjalstad, A. 1993. Spreite trace fossils (Teichichnus) in a raised Holocene fjord-delta, Breidvikeidet, Norway. Ichnos, 2:155164.CrossRefGoogle Scholar
Crimes, T. P. 1970. Trilobite tracks and other trace fosils from the Upper Cambrian of North Wales. Geological Journal, 7:4768.CrossRefGoogle Scholar
Davis, R. B., Minter, N., and Braddy, S. 2007. The neoichnology of terrestrial arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology, 255:284307.CrossRefGoogle Scholar
Dawson, J. W. 1864. On the fossils of the genus Rusophycus . The Canadian Naturalist and Geologist, New Series, 1:363367.Google Scholar
Desjardins, P. R., Buatois, L. A., Limarino, C. O., and Cisterna, G. 2009. Latest Carboniferous-earliest Permian transgressive deposits in the Paganzo Basin of Western Argentina: lithofacies and sequence stratigraphy of a coastal plain to shallow-marine succession. Journal of South American Earth Sciences, 48:4053.CrossRefGoogle Scholar
d'Orbigny, A. 1842. Voyage dans l'Amérique méridionale le Brésil, la République orientale de l' Uruguay, la République Argentine, la Patagonie, la République du Chili, la République de Bolivia, la République du Pérou exécuté pendant les années 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833. Pitois-Leverault, Paris. Leverault, Strasbour, 3, 188 p.Google Scholar
Eyles, N., Vossler, S. M., and Lagoe, M. B. 1992. Ichnology of a glacially-influenced continental shelf and slope; the late Cenozoic Gulf of Alaska (Yakataga Formation). Palaeogeography, Palaeoclimatology, Palaeoecology, 94:193221.CrossRefGoogle Scholar
Farrow, G. E., Syvitski, J. P. M., and Tunnicliffe, V. 1983. Suspended particulate loading on the macrobenthos in a highly turbid fjord: Knight Inlet, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 40(Suppl. 1):273288.CrossRefGoogle Scholar
Feder, H. M. and Keiser, G. E. 1980. Intertidal biology, p. 143233. In Colonell, J. M. (ed.), Port Valdez, Alaska: Environmental studies 1976-1979. Occasional Publication No. 5. Institute of Marine Science, University of Alaska, Fairbanks.Google Scholar
Fillion, D. and Pickerill, R. K. 1990. Ichnology of the Upper Cambrian(?) to Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland, Canada. Palaeontographica Canadiana 7, 82 p.Google Scholar
Föllmi, K. B. and Grimm, K. A. 1990. Doomed pioneers: Gravity flow deposition and bioturbation in marine oxygen-deficient environments. Geology, 18:10691072.2.3.CO;2>CrossRefGoogle Scholar
Fryer, G. 1966. Branchinecta gigas Lynch, a non-filter-feeding, raptatory anostracan, with notes on the feeding habits of certain other anostracans. Proceedings of the Linnean Society of London, 177:1934.CrossRefGoogle Scholar
Fryer, G. 1983. Functional ontogenetic changes in Branchinecta ferox Milne Edwards (Crustacea: Anostraca). Philosophical Transactions of the Royal Society of London, Series B, Biological, 303:229343.Google Scholar
Fryer, G. 1985. Structure and habits of living branchiopod crustaceans and their bearing on the interpretation of fossil forms. Transactions of the Royal Society of Edinburgh, 76:103113.CrossRefGoogle Scholar
Fryer, G. 1988a. A new classification of the branchiopod Crustacea. Zoological Journal of the Linnean Society, 91:357383.CrossRefGoogle Scholar
Fryer, G. 1988b. Studies on the functional morphology and biology of the notostraca (Crustacea: Branchiopoda). Philosophical Transactions of the Royal Society of London. Series B, Biological, 321:27124.Google Scholar
Gand, G., Garrie, J., Schneider, J., Walter, H., Lapeyrie, J., Martin, C., and Thiery, A. 2008. Notostraca trackways in Permian playa environments of the Lodève Basin (France). Journal of Iberian Geology, 34:73108.Google Scholar
Gingras, M. K., Dashtgard, S. E., MacEachern, J. A., and Pemberton, S. G. 2008. Biology of shallow marine ichnology: a modern perspective. Aquatic Biology, 2:255268.CrossRefGoogle Scholar
Grimm, K. A. and Föllmi, K. B. 1994. Doomed pioneers: allochthonous crustacean tracemakers in anaerobic basinal strata, Oligo-Miocene San Gregorio Formation, Baja California Sur, Mexico. Palaios, 9:313334.CrossRefGoogle Scholar
Hahn, G., Brauckmann, C., and Groning, E. 2001. Carboniferous and Permian trilobites in South America. Acta Geologica Leopoldensia, 24:259270.Google Scholar
Henry, L. C., Isbell, J. L., and Limarino, C. O. 2008. Carboniferous glacigenic deposits of the proto-Precordillera of west-central Argentina, p. 131142. In Fielding, C. R., Frank, T. D., and Isbell, J. L. (eds.), Resolving the late Paleozoic ice age in time and space. Geological Society of America, Special Paper, 441 p.CrossRefGoogle Scholar
Jensen, S. 1997. Trace fossils from the Lower Cambrian Mickwitzia Sandstone, south-central Sweden. Fossils and Strata, 42:1111.CrossRefGoogle Scholar
Keighley, D. G. and Pickerill, R. K. 1996. Small Cruziana, Rusophycus, and related ichnotaxa from eastern Canada: the nomenclatural debate and systematic ichnology. Ichnos, 4:261285.CrossRefGoogle Scholar
Limarino, C. O., Sessarego, H., Cesari, S., and López Gamundí, O. 1986. El perfil de la Cuesta de Huaco, estratotipo de referencia (hipoestratotipo) del Grupo Paganzo en la precordillera central. Anales de la Academia Nacional de Ciencias Exactas, Físicas y Naturales, 38:81109.Google Scholar
Limarino, C. O., Cesari, S. N., Net, L. I., Marenssi, S. A., Gutierrez, R. P., and Tripaldi, A. 2002. The Upper Carboniferous postglacial transgression in the Paganzo and Río Blanco basins (northwestern Argentina): facies and stratigraphic significance. Journal of South American Earth Sciences, 15:445460.CrossRefGoogle Scholar
Linck, O. 1942. Die Spur Isopodichnus . Senckenbergiana, 25:232255.Google Scholar
López-Gamundí, O. R. and Buatois, L. A. 2010. Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper, 468:207 p.Google Scholar
López-Gamundí, O. R. and Martinez, M. 2000. Evidence of glacial abrasion in the Calingasta-Uspallata and western Paganzo basins, mid-Carboniferous of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 159:145165.CrossRefGoogle Scholar
Mángano, M. G. and Buatois, L. A. 2003. Trace fossils, p. 507553. In Benedetto, J. L. (ed.), Ordovician fossils of Argentina. Universidad Nacional de Cordoba, Secretaría de Ciencia y Tecnología, Córdoba.Google Scholar
Mángano, M. G., Buatois, L. A., West, R. R., and Maples, C. G. 2002. Ichnology of an equatorial tidal flat: The Stull Shale Member at Waverly, eastern Kansas. Bulletin of the Kansas Geological Survey, 245:1130.Google Scholar
Marenco, K. N. and Bottjer, D. J. 2010. The intersection grid technique for quantifying the extent of bioturbation on bedding planes. Palaios, 25: 457–62.CrossRefGoogle Scholar
Marenssi, S. A., Tripaldi, A., Limarino, C. O., and Caselli, A. T. 2005. Facies and architecture of a Carboniferous grounding-line system from the Guandacol Formation, Paganzo Basin, Northwestern Argentina. Gondwana Research, 8:187202.CrossRefGoogle Scholar
Martinez, M. 1993. Compte Rendus XII Congres International Stratigraphie et Geologie du Carbonifere et Permien Compte Rendus XII Congres International Stratigraphie et Geologie du Carbonifere et Permien, 2:291296.Google Scholar
Miller, M. F. and Smail, S. E. 1997. A semiquantitative field method for evaluating bioturbation on bedding planes. Palaios, 12:391396.CrossRefGoogle Scholar
Minter, N. J. and Braddy, S. J. 2009. Ichnology of an Early Permian tidal flat: The Robledo Mountains Formation of the Robledo Mountains, Southern New Mexico, U.S.A. Special Papers in Palaeontology, 82:1107.Google Scholar
Minter, N. J., Krainer, K., and Lucas, S. G. 2007a. Paleoecology of an Early Permian playa lake trace fossil assemblage from Castle Peak, Texas, U.S.A. Palaeogeography, Paleoclimatology, Palaeoecology, 246:390423.CrossRefGoogle Scholar
Minter, N. J., Braddy, S. J., and Davis, R. B. 2007b. Between a rock and a hard place: Arthropod trackways and ichnotaxonomy. Lethaia, 40:365375.CrossRefGoogle Scholar
Ormiston, A. R. 1966. Occurrence of Australosutura (Trilobita) in the Mississippian of Oklahoma, U.S.A. Palaeontology, 9:270273.Google Scholar
Ottone, E. G. and Azcuy, C. L. 1986. El perfil de la Quebrada la Delfina, Provincia de San Juan, Argentina. Revista de la Asociación Geológica Argentina, 41:124136.Google Scholar
Pazos, P. J. 2000. Trace fossils and facies in glacial to postglacial deposits from the Paganzo basin (Late Carboniferous), central Precordillera, Argentina. Ameghiniana, 37:2338.Google Scholar
Pazos, P. J. 2002a. The Late Carboniferous glacial to postglacial transition: facies and sequence stratigraphy, western Paganzo Basin, Argentina. Gondwana Research, 5:467487.CrossRefGoogle Scholar
Pazos, P. J. 2002b. Palaeoenvironmental framework of the glacial-postglacial transition (late Paleozoic) in the Paganzo-Calingasta Basin (southern South America) and the Great Karoo-Kalahari Basin (southern Africa): Ichnological implications. Gondwana Research, 5:619640.CrossRefGoogle Scholar
Pickerill, R. K. 1994. Nomenclature and taxonomy of invertebrate trace fossils, p. 342. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. John Wiley and Sons, Chichester.Google Scholar
Pickerill, R. K. and Narbonne, G. M. 1995. Composite and compound ichnotaxa: a case example from the Ordovician of Quebec, eastern Canada. Ichnos, 4:5369.CrossRefGoogle Scholar
Pollard, J. E. 1985. Isopodichnus related arthropod trace fossils and notostracans from Triassic fluvial sediments. Transactions of the Royal Society of Edinburgh. Earth Sciences, 76:273285.Google Scholar
Pollard, J. E., Goldring, R., and Buck, S. G. 1993. Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. Journal of the Geological Society, 150:149164.CrossRefGoogle Scholar
Ramos, V. A. 1988. The tectonics of the Central Andes; 30° to 33° S latitude, p. 3154. In Clark, S. P. (ed.), Processes in continental lithospheric deformation. Geological Society of America, Special Paper, 218 p.CrossRefGoogle Scholar
Rouault, M. 1850. Note preliminaire (1) sur une nouvelle formation decouverte dans le terrain silurien inferieur de la Bretagne. Société Geologique de France, Bulletin série 2, 7:724744.Google Scholar
Sadlok, G. and Machalski, M. 2010. The trace fossil Rusophycus versans from the Furongian (Upper Cambrian) of central Poland–an example of behavioural convergence amongst arthropods. Acta Geologica Polonica, 60:119123.Google Scholar
Schindewolf, O. H. 1921. Studien aus dem Marburger Buntsandstein. Senckenbergiana, 3:3349.Google Scholar
Schlirf, M., Uchman, A., and Kummel, M. 2001. Upper Triassic (Keuper) nonmarine trace fossils from the Haßberge area (Franconia, south-eastern Germany). Paläontologische Zeitschrift, 75:7196.CrossRefGoogle Scholar
Schram, F. R. 1979. The genus Archaeocaris, and a general review of the Palaeostomatopoda (Hoplocarida: Malacostraca). Transactions of the San Diego Society of Natural History, 19:5766.Google Scholar
Seilacher, A. 1970. Cruziana stratigraphy of “non-fossiliferous” Palaeozoic sandstones, p. 447476. In Crimes, T. P. and Harper, J. C. (eds), Trace Fossils. Geology Journal, Special Issue 3.Google Scholar
Seilacher, A. 1985. Trilobite palaeobiology and substrate relationship. Transactions of the Royal Society of Edinburgh, 76:231237.CrossRefGoogle Scholar
Seilacher, A. 1990. Paleozoic trace fossils, p. 649670. In Said, R. (ed.), The Geology of Egypt. A.A. Balkema Publishers, Rotterdam, Netherlands.Google Scholar
Seilacher, A. 1992. An updated Cruziana stratigraphy of Gondwanan Palaeozoic sandstones, p. 15651580. In Salem, M. J. (ed.), The Geology of Libya. Elsevier, Amsterdam.Google Scholar
Seilacher, A. 2007. Trace Fossil Analysis. Springer Verlag, Heidelberg, 226 p.Google Scholar
Selley, R. C. 1970. Ichnology of Paleozoic sandstones in the Southern Desert of Jordan: A study of trace fossils in their sedimentologic context. In Crimes, T. P. and Harper, J. C. (eds.), Trace Fossils. Geological Journal Special Issue, 3:477488.Google Scholar
Syvitski, J. P. M., Burrell, D. C., and Skei, J. M. 1987. Fjords: processes and products. Springer-Verlag, New York, 379 p.CrossRefGoogle Scholar
Tasch, P. 1964. Conchostracan trails in bottom clay muds and on turbid water surfaces. Transactions of the Kansas Academy of Sciences, 67:126128.CrossRefGoogle Scholar
Trewin, N. H. 1976. Isopodichnus in a trace fossil assemblage from the Old Red Sandstone. Lethaia, 9:2937.CrossRefGoogle Scholar
Uchman, A. and Pervesler, P. 2006. Surface lebensspuren produced by amphiopods and isopods (Crustaceans) from the Isonzo delta tidal flat, Italy. Palaios, 21:384390.CrossRefGoogle Scholar
Wills, M. A. 1998. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biological Journal of the Linnean Society, 65:455500.CrossRefGoogle Scholar
Young, F. G. 1972. Early Cambrian and older trace fossils from the Southern Cordillera of Canada. Canadian Journal of Earth Sciences, 9:117.CrossRefGoogle Scholar