Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T22:19:40.845Z Has data issue: false hasContentIssue false

First articulated Silurian sponges from the Iberian Peninsula (Spain and Portugal)

Published online by Cambridge University Press:  14 July 2015

J. Keith Rigby
Affiliation:
Department of Geology, 673 WIDB, P.O. Box 25111, Brigham Young University, Provo, UT 84602-5111, USA
J. C. Gutiérrez-Marco
Affiliation:
Unidad Estructural Investigación en Paleontología, Instituto de Geología Económica (CSIC-UCM), Ciudad Universitaria, 28040 Madrid, Spain
M. Robardet
Affiliation:
Laboratoire de Stratigraphie et Paléontologie, Université de Rennes I, F-35042 Rennes Cedex, France
J. M. Piçarra
Affiliation:
Instituto Geológico e Mineiro, Departamento de Geologia, Ap. 104, 7802 Beja Codex, Portugal

Abstract

The first-described articulated Silurian sponges from Spain and Portugal include a moderate assemblage of hexactinellids and a single monaxonid demosponge. The sponges were collected from a thin layer at the top of the Cyrtograptus lundgreni-Monograptus testis graptolite biozone, in a possible volcanic ash of latest Homerian (Wenlock) age. The sponges are from southeastern Portugal and southwestern Spain in the Ossa-Morena Zone of the Hesperian Massif. The hexactinellid collection includes several specimens of the new species, Protospongia iberica, and fragments of Diagoniella species and Gabelia(?) sp. Specimens of the latter two taxa are too small for species identification. Demosponges are represented by a single described specimen of a probably new genus and species preserved as a “wreath” of monaxon spicules. Dermal and gastral layers are of very fine spicules developed over the moderately coarse, aligned, principal body spicules.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1850. Graptolites de Bohême; extraits du Système Silurien du Centre de la Bohême. Prague, 74 p.Google Scholar
Chauvel, J. 1936. Note sur les Cystidées armoricaines: genre Calix et Pachycalix. Societe Geologique et Minéralogique de Bretagne, Comptes Rendus Sommaires, 2eme annee, 2:14.Google Scholar
Dawson, J. W. 1888. Preliminary note on new species of sponges from the Quebec Group at Little Métis. Canadian Record of Science, 3:4950.Google Scholar
Dawson, J. W. 1890. New species of fossil sponges from the Siluro-Cambrian at Little Metis on the Lower St. Lawrence (including notes on the specimens, by Dr. G. J. Hinde, F.G.S.). Transactions of the Royal Society of Canada, 7(4):3155.Google Scholar
Delgado, J. F. N. 1908. Système Silurique du Portugal. Étude de Stratigraphie paléontologique. Mémoires de la Commission du Service Geologique du Portugal, Lisbon, p. 1245.Google Scholar
Finks, R. M. 1960. Late Paleozoic sponge faunas of the Texas Region. The siliceous sponges. Bulletin of the American Museum of Natural History, 120, article 1, 160 p.Google Scholar
Gutiérrez-Marco, J. C., Lenz, A. C., Robardet, M., and Piçarra, J. M. 1996. Wenlock-Ludlow graptolite biostratigraphy and extinction: a reassessment from the southwestern Iberian Peninsula (Spain and Portugal). Canadian Journal of Earth Sciences, 33:656663.CrossRefGoogle Scholar
Hinde, G. J. 1887-1893. A monograph of the British fossil sponges. Palaeontographical Society Monographs, 1887, Part 1, p. 192; 1888, Part 2, p. 93-188; 1893, Part 3, p. 189-254.Google Scholar
Holm, G. 1890. Gotlands Graptoliter. Bihang till Kungliche Svenska Vetenskap Akademien Handlingar, Series 4, 16(7) 34 p.Google Scholar
Jaeger, H. 1991. Neue Standard-Graptolithenzonenfolge nach der “Grossen Krise” an der Wenlock/Ludlow-Grenze (Silur). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 182:303354.CrossRefGoogle Scholar
Jaeger, H., and Robardet, M. 1979. Le Silurien et le Devonien basal dans le Nord de la Province de Seville (Espagne). Geobios, 12:687714.CrossRefGoogle Scholar
Jeppsson, L., Aldridge, R. J., and Dorning, K. J. 1995. Wenlock (Silurian) oceanic episodes and events. Geological Society of London Quarterly Journal, 152:487498.CrossRefGoogle Scholar
Koren', T. N. 1991. The lundgreni extinction event in central Asia and its bearing on graptolite biochronology within the Homerian. Proceedings of the Estonian Academy of Science, Geology, 40:7478.CrossRefGoogle Scholar
Koren', T. N., and Urbanek, A. 1994. Adaptive radiation of monograptids after the Late Wenlock crisis. Acta Palaeontologica Polonica, 39:137167.Google Scholar
La Rosa, A. De, De Alvarado, A., and Hernandez Pacheco, F. 1929. Memoria explicativa de la Hoja n° 836 (Mestanza) del Mapa Geológico de España a escala 1:50,000. Instituto Geológico y Minero de España, 87 p.Google Scholar
Laubenfels, M. W. De. 1955. Porifera, p. E21E112. In, Moore, R. C., (ed.) Treatise on Invertebrate Paleontology, Part E, Geological Society of America and University of Kansas Press, Laurence, Kansas.Google Scholar
Lenz, A. C. 1993. Late Wenlock-Ludlow (Silurian) graptolite extinction, evolution, and biostratigraphy: perspectives from Artic Canada. Canadian Journal of Earth Sciences, 30:491–418.CrossRefGoogle Scholar
Lenz, A. C. 1994. Extinction and opportunistic evolution among late Wenlock graptolites. Lethaia, 27:111117.CrossRefGoogle Scholar
Meléndez, B. 1958. Nuevo Cistideo del Ordoviciense de los Montes de Toledo. Notas y Communicaciones del Instituto Geológico y Minero de España, 50:321331.Google Scholar
Mostler, H. 1985. Neue heteractinide Spongien (Calcispongea) aus dem Unter-und Mittelkambrium Südwestsardiniens. Bericht Naturwissenschaftlich-Medizinischen Vereins in Innsbruck, 72:732.Google Scholar
Piçarra, J. M., Gutiérrez-Marco, J. C., Oliveira, J. T., Robardet, M., and Jaeger, H. 1992. Bioestratigrafia do Silúrico da Zona de Ossa Morena (Portugal-Espanha): revisao critica dos dados existentes. Publicaciones del Museo de Geología de Extremadura, 1:118119.Google Scholar
Quinby-Hunt, M. S., and Berry, W. B. N. 1991. Late Wenlock (Middle Silurian) global bioevent: possible chemical cause for mass graptolite mortalities. Historical Biology, 5:171181.CrossRefGoogle Scholar
Rauff, . 1894. Paleospongiologie. Palaeontographica, 41:233346.Google Scholar
Reid, R. E. H. 1958. A monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland. Palaeontographical Society Monographs. Part 1, p 146CrossRefGoogle Scholar
Reif, W. E. 1968. Schwammreste aus dem oberen Ordovizium von Estland und Schweden. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1968:733744.Google Scholar
Rezvoi, P. D., Zhuravleva, I. T., and Koltun, V. M. 1962. Phylum Porifera, p. 1774, In Orlov, Yu. A., Fundamentals of Paleontology. Volume 3, Izdatel'stvo Akademie Nauk, SSSR, Moscow(translated Israel Program for Scientific Translations, Jerusalem, 1971).Google Scholar
Rigby, J. K. 1966. Protospongia hicksi Hinde from the Middle Cambrian of western Utah. Journal of Paleontology, 40:549554.Google Scholar
Rigby, J. K. 1978. Porifera of the Middle Cambrian Wheeler Shale, from the Wheeler Amphitheater, House Range, in western Utah. Journal of Paleontology, 52:705716.Google Scholar
Rigby, J. K. 1983. Sponges of the Middle Cambrian Marjum Limestone from the House Range and Drum Mountains of western Millard County, Utah. Journal of Paleontology, 57:240270.Google Scholar
Rigby, J. K., and Harris, D. A. 1979. A new Silurian sponge fauna from northern British Columbia, Canada. Journal of Paleontology, 53:968980.Google Scholar
Rigby, J. K., and Maher, B. J. 1995. Age of the hexactinellid beds of the Roberts Mountains Formation, Snake Mountains, Nevada, and additions to the Silurian sponge fauna. Journal of Paleontology, 69:10201029.CrossRefGoogle Scholar
Rigby, J. K., Maher, B. J., and Brown, Q. 1991. New hexactinellids from the Siluro-Devonian of the Snake Mountains, Elko County, Nevada, and a new locality for Gabelia. Journal of Palaeontology, 65:709714.CrossRefGoogle Scholar
Rigby, J. K., and Murphy, M. 1983. Gabelia, a new late Devonian lyssakid protosponge from the Robert Mountains, Nevada. Journal of Paleontology, 57:797803.Google Scholar
Rigby, J. K., and Toomey, D. F. 1978. A distinctive sponge spicule assemblage from organic buildups in the Lower Ordovician of Southern Oklahoma. Journal of Paleontology, 52:501506.Google Scholar
Robardet, M. 1982. The Silurian-earliest Devonian succession in South Spain (Ossa Morena Zone) and its paleogeographical significance. IGCP no. 5 Newsletter, 4:7277.Google Scholar
Robardet, M., and Gutierrez-Marco, J. C. 1990a. Ossa-Morena Zone, Stratigraphy, Passive margin phase (Ordovician-Silurian-Devonian), p. 267272. In Dallmeyer, R. D. and Martinez Garcia, E. (eds.), Pre-Mesozoic Geology of Iberia. Springer-Verlag, Berlin and Heidelberg.Google Scholar
Robardet, M., and Gutierrez-Marco, J. C. 1990b. Sedimentary and faunal domains in the Iberian Peninsula during Lower Paleozoic times, p. 383395. In Dallmeyer, R. D. and Martinez García, E. (eds.), Pre-Mesozoic Geology of Iberia, Springer-Verlag, Berlin and Heidelberg.CrossRefGoogle Scholar
Salter, J. W. 1852. Description of some graptolites from the south of Scotland. Geological Society of London, Quarterly Journal, 8:388392.CrossRefGoogle Scholar
Salter, J. W. 1864. On some new fossils from the Lingula-flags of Wales. Geological Society of London, Quarterly Journal, 20:233241.CrossRefGoogle Scholar
Sarmiento, G. N. 1993. Conodontos ordovícicos de Sierra Morena (Macizo Hespérico meridional). Tesis Doctoral, Universidad Complutense de Madrid, 599 p.Google Scholar
Sarmiento, G. N., Méndez-Bedia, I., Aramburu, C., Arbizu, M., and Truyols, J. 1994. Early Silurian conodonts from the Cantabrian Zone, NW Spain. Géobios, 27:507522.CrossRefGoogle Scholar
Saupé, F. 1971. La série ordovicienne et silurienne d'Almadén (province de Ciudad Real, Espagne). Point des connaissances actuelles. Mémoires du Bureau de Recherches Géologiques et Miniéres, 73:355365.Google Scholar
Schmidt, O. 1870. Grundzuge einer Spongien-Fauna des atlantischen Gebietes. Wilhelm Engelmann, Leipzig, 88 p.Google Scholar
Schulze, F. E. 1887. Report on the Hexactinellida collected by H.M.S. Challenger during the years 1873-76. The Voyage of H.M.S. Challenger, Zoology, 21, 514 p.Google Scholar
Sdzuy, K. 1969. Unter-und mittelkambrische Porifera (Chancelloriida und Hexactinellida). Paläontologische Zeitschrift, 43:115147.CrossRefGoogle Scholar
Sollas, W. J. 1875. Sponges, p. 451. In Baynes, T. S. (ed.), Encyclopaedia Brittanica, a Dictionary of Arts, Sciences and General Literature, 9th edition, Edinburgh.Google Scholar
Sollas, W. J. 1883. The Group Spongiae, p. 312331. In Cassel's Encyclopedia, v. 6, London.Google Scholar
Suess, E. 1851. Über böhmische Graptolithen. Naturwissenschaftlichen Abhandlungen yon W. Haidinger, Wien, 4:89134.Google Scholar
Topsent, E. 1898. Éponges nouvelles des Açores. Mémoire de la Société Zoologique de France, 11:225255.Google Scholar
Ul'st, R. ZH. 1974. Llandoveriyskiye otlozheniya Severnoy Latvii i ikh korrelyatsiya (Llandoverian deposits of northern Latvia and their correlations), p. 7188. In Problemy regional'noy geologii Pribaltiki i Belorusii. Ministestus Geologicheskiy SSSR, Vsesoyuznyi Nauchno-Issledovateliskii Institut Morsh Geologicheskiy i Geofizicheskikh Riga, 1993.Google Scholar
Walcott, C. D. 1886. Second contribution to the studies on the Cambrian faunas of North America. United States Geological Survey Bulletin, 30, 369 p.Google Scholar
Webby, B. D., and Trotter, J. 1993. Ordovician sponge spicules from New South Wales. Journal of Paleontology, 67:2841.CrossRefGoogle Scholar