Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-30T19:57:44.797Z Has data issue: false hasContentIssue false

Compressive and rarefactive dust ion-acoustic solitary waves with degenerate electron–positron–ion plasma

Published online by Cambridge University Press:  25 March 2015

K. N. Mukta
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
M. S. Zobaer
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
N. Roy*
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
A. A. Mamun
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
*
Email address for correspondence: niparoybd@gmail.com

Abstract

The nonlinear propagation of dust ion-acoustic (DIA) waves in a unmagnetized collisionless degenerate dense plasma (containing degenerate electron and positron, and classical ion fluids) has been theoretically investigated. The K-dV equation has been derived by employing the reductive perturbation method and by taking into account the effect of different plasma parameters in plasma fluid. The stationary solitary wave solution of K-dV equation is obtained, and numerically analyzed to identify the basic properties of DIA solitary structures. It has been shown that depending on plasma parametric values, the degenerate plasma under consideration supports compressive or rarefactive solitary structures. It has been also found that the effect of pressures on electrons, ions, and positrons significantly modify the basic features of solitary waves that are found to exist in such a plasma system. The relevance of our results in astrophysical objects such as white dwarfs and neutron stars, which are of scientific interest, is discussed briefly.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, S., Moslem, W. M., Shukla, P. K. and Schlickeiser, R. 2007 Phys. Plasmas 14, 082307.CrossRefGoogle Scholar
Chandrasekhar, S. 1931a Phil. Mag. 11, 592.CrossRefGoogle Scholar
Chandrasekhar, S. 1931b Astrophys. J. 74, 81.CrossRefGoogle Scholar
Chandrasekhar, S. 1934 The Observatory 57.Google Scholar
Chandrasekhar, S. 1935 Mon. Not. R. Astron. Soc. 170, 405.Google Scholar
Chandrasekhar, S. 1984 Science 226, 4676.CrossRefGoogle Scholar
Goldreich, P. and Julian, W. H. 1969 Astrophys. J. 157, 869.CrossRefGoogle Scholar
Harding, A. K. and Lai, D. 2006 Rep. Prog. Phys. 69, 2631.CrossRefGoogle Scholar
Hass, F. 2007 Phys. Plasmas 13, 042309.CrossRefGoogle Scholar
Hoyos, J., Reisenegger, A. and Valdivia, J. A. 2008 Astron. Astrophys. 287, 789.CrossRefGoogle Scholar
Khan, S. A. and Masood, W. 2007 Phys. Plasmas 15, 062301.CrossRefGoogle Scholar
Koester, D. and Chanmugam, G. 1990 Rep. Prog. Phys. 53, 837.CrossRefGoogle Scholar
Lai, D. 2001 Rev. Mod. Phys. 73, 629.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2010a Phys. Lett. A 324, 4238.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2010b Phys. Plasmas 17, 104504.CrossRefGoogle Scholar
Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
Maxon, S. and Viecelli, J. 1974 Phys. Rev. Lett. 32, 4.CrossRefGoogle Scholar
Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.CrossRefGoogle Scholar
Michel, F. C. 1991 Theory of Neutron Star Magnetospheres. Chicago, IL: Chicago University Press.Google Scholar
Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin, Germany: Springer-Verlag, 202 pp.Google Scholar
Mishra, M. K., Tiwari, R. S. and Jain, S. K. 2007 Phys. Rev. E 76, 036401.CrossRefGoogle Scholar
Misner, W., Thorne, K. S. and Wheeler, J. A. 1973 Gravitation. San Francisco, CA: Freeman, 763 pp.Google Scholar
Misra, A. and Samanta, S. 2008 Phys. Plasmas 15, 123307.Google Scholar
Mushtaq, A. and Khan, S. A. 2007 Phys. Plasmas 14, 052307.CrossRefGoogle Scholar
Rees, M. J. 1983 The Very Early Universe. Cambridge, UK: Cambridge University Press.Google Scholar
Ren, H., Wu, Z., Cao, J. and Chu, P. K. 2007 J. Phys. A: Math. Theor. 41, 11501.Google Scholar
Rizzato, F. B. 1988 Plasma Phys. 40, 289.CrossRefGoogle Scholar
Roy, N., Tasnim, S. and Mamun, A. A. 2012 Phys. Plasmas 19, 033705.CrossRefGoogle Scholar
Shukla, P. K., Rao, N. N., Yu, M. Y. and Tsintsadze, N. L. 1986 Phys. Rep. 135, 1.CrossRefGoogle Scholar
Surko, C. M. and Murphy, T. J. 1990 Phys. Fluids B 2, 1372.CrossRefGoogle Scholar
Tandberg-Hansen, E. and Emslie, A. G. 1988 The Physics of Solar Flares. Cambridge, UK: Cambridge University Press, 124 pp.Google Scholar
Yu, M. Y., Shukla, P. K. and Stenflo, L. 1986 Astrophys. J. 309, L63.CrossRefGoogle Scholar