Article contents
Computer modelling of three-dimensional dynamics of fast reconnection
Published online by Cambridge University Press: 13 March 2009
Abstract
Computer simulations are used to investigate the basic three-dimensional structure of the fast reconnection mechanism spontaneously developing from a long current sheet. It is shown that if three-dimensional effects (∂sol;∂z ≠ 0) are not so strong, a locally enhanced resistivity results in current-sheet thinning, and a fast reconnection process, involving switch-off shocks, is eventually set up in a region limited in the z direction. The fast reconnection process near the z = 0 plane becomes quasi-steady and two-dimensional (∂/∂z = 0), so that the well-known Petschek mechanism is fully applicable. Distinct plasma rarefaction occurs inside the fast reconnection region, so that fast-mode expansion may propagate in the z direction, and the resulting inflow velocity uz takes the magnetic field into the fast reconnection region and contracts the latter. The global current system undergoes drastic changes during the fast-reconnection development. The current flow, initially directed in the z direction, first converges towards the neutral line, and is then largely deflected away from this line in the inner reconnection region.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1991
References
REFERENCES
- 13
- Cited by