Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T17:00:31.209Z Has data issue: false hasContentIssue false

Cosmic ray transport in non-uniform magnetic fields: consequences of gradient and curvature drifts

Published online by Cambridge University Press:  08 January 2010

R. SCHLICKEISER
Affiliation:
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany (rsch@tp4.ruhr-uni-bochum.de)
F. JENKO
Affiliation:
Max-Planck-Insitut für Plasmaphysik, EURATOM Association, 85748 Garching, Germany

Abstract

Large-scale spatial variations of the guide magnetic field of interplanetary and interstellar plasmas give rise to the mirror force −(p2/2mγB)∇B). The parallel component of this mirror force causes adiabatic focusing of the cosmic ray guiding center whereas the perpendicular component of the mirror force gives rise to the gradient and curvature drifts of the cosmic ray guiding center. Adiabatic focusing and the gradient and curvature drift terms additionally enter the Fokker–Planck transport equation for the gyrotropic cosmic ray particle phase space density in partially turbulent non-uniform magnetic fields. For magnetohydrodynamic turbulence with dominating magnetic fluctuations, the diffusion approximation is justified, which results in a modification of the diffusion–convection transport equation for the isotropic part of the gyrotropic phase space density from the additional focusing and drift terms. For axisymmetric undamped slab Alfvenic turbulence we show that all perpendicular spatial diffusion coefficients are caused by the non-vanishing gradient and curvature drift terms. For a specific (symmetric in μ) choice of the pitch-angle Fokker–Planck coefficients we show that the ratio of the perpendicular to parallel spatial diffusion coefficients apart from a constant is determined by the spatial first derivatives of the non-constant cosmic ray Larmor radius in the non-uniform magnetic field.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriani, O., Barbarino, G. C., Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bogomolov, E. A., Bonechi, L., Bongi, M., Bonvicini, V., Bottai, S. et al. 2009 An anomalous positron abundance in cosmic rays with energies 1.5-100GeV. Nature 458, 607.Google Scholar
Antonsen, T. M. and Lane, B. 1980 Kinetic equations for low frequency instabilities in inhomogeneous plasmas. Phys. Fluids 23, 1205.Google Scholar
Bieber, J. W., Dröge, W., Evenson, P. A., Pyle, R., Ruffalo, D., Pinsook, U., Tooprakai, P., Rujiwarodom, M., Khumlumlert, T. and Krucker, S. 2002 Energetic Particle Observations during the 2000 July 14 Solar Event. ApJ 567, 622.CrossRefGoogle Scholar
Boyd, T. J. M. and Sanderson, J. J. 1969 Plasma Dynamics. London: Thomas Nelson and Sons.Google Scholar
Cap, F. 1970 Einführung in die Plasmaphysik I. Berlin: Akademie-Verlag, Berlin.Google Scholar
Catto, P. J., Tang, W. M. and Baldwin, D. E. 1981 Generalized gyrokinetics. Plasma Phys. 23, 639.CrossRefGoogle Scholar
Compton, A. H. and Getting, I. A. 1935 An apparent effect of galactic rotation on the intensity of cosmic rays. Phys. Rev. 47, 817.Google Scholar
Earl, J. A. 1974 The diffusive idealization of charged-particle transport in random magnetic fields. ApJ 193, 231.CrossRefGoogle Scholar
Hasselmann, K. and Wibberenz, G. 1968 Scattering of charged particles by random electromagnetic fields. Z. Geophysics 34, 353.Google Scholar
Hauff, T., Jenko, F., Shalchi, A. and Schlickeiser, R. 2009 Scaling theory for cross-field transport of cosmic rays in turbulent fields. ApJ (submitted).Google Scholar
Jaekel, U. and Schlickeiser, R. 1992 Cosmic ray transport I. The Fokker-Planck coefficients in random electromagnetic fields. J. Phys. G 18, 1089.Google Scholar
Jokipii, J. R. 1966 Cosmic-Ray Propagation. I. Charged Particles in a Random Magnetic Field. ApJ 146, 480.Google Scholar
Kunstmann, J. 1979 A new transport mode for energetic charged particles in magnetic fluctuations superposed on a diverging mean field. ApJ 229, 812.Google Scholar
Roelof, E. C. 1969 Propagation of solar cosmic rays in the interplanetary magnetic field. In: Lectures in High Energy Astrophysics (eds. Ögelman, H. and Wayland, J. R.), NASA SP-199. Scientific and Technical Information Division, Office of Technology Utilization, NASA, Washington, DC, p. 111.Google Scholar
Schlickeiser, R. 1989 Cosmic ray transport and acceleration I. Derivation of the kinetic equation and application to cosmic rays in static cold media. ApJ 336, 243.Google Scholar
Schlickeiser, R. 2002 Cosmic Ray Astrophysics. Heidelberg, Germany: Springer.Google Scholar
Schlickeiser, R. 2009 First-order distributed Fermi acceleration of cosmic ray hadrons in nonuniform magnetic fields. Modern Phys. Lett. A 24, 1461.Google Scholar
Schlickeiser, R., Dohle, U., Tautz, R. C. and Shalchi, A. 2007 A new type of cosmic ray anisotropy from perpendicular diffusion I. Modification of the spatial diffusion tensor and the diffusion-convection cosmic ray transport equation. ApJ 661, 185 (paper I).Google Scholar
Schlickeiser, R. and Shalchi, A. 2008 Cosmic ray diffusion approximation with weak adiabatic focusing. ApJ 686, 292.CrossRefGoogle Scholar
Shalchi, A. 2009 Nonlinear Cosmic Ray Diffusion Theories, Astrophysics and Space Science Library, Vol. 362. Berlin: Springer.CrossRefGoogle Scholar
Skilling, J. 1975 Cosmic ray streaming. I - Effect of Alfven waves on particles MNRAS 172, 557.Google Scholar
Spangler, S. R. and Basart, J. P. 1981 A model for energetic electron transport in extragalactic radio sources. ApJ 243, 1103.Google Scholar