Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T07:03:49.139Z Has data issue: false hasContentIssue false

The effects of ionization on the jump conditions for MHD and transverse ionizing shock waves

Published online by Cambridge University Press:  13 March 2009

R. C. Cross
Affiliation:
School of Physios, The University of Sydney, Sydney, NSW 2006, Australia
C. D. Mathers
Affiliation:
School of Physios, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

The jump conditions for MHD shock waves in partly ionized gases and for transverse ionizing shock waves in neutral gases are obtained in explicit forms suitable for calculation. The fractional ionization behind the shook front is determined by assuming the plasma reaches Saha ionizational equilibrium. Solutions to the MHD jump equations are calculated for geometries ranging from transverse to switch-on. Switch-on shock jump solutions are compared with experimental observations of switch-on shock waves in partly ionized hydrogen plasmas. Numerical solutions are presented for transverse ionising shock waves in hydrogen, using the pre-shock electric field as a variable parameter, and the modes of propagation of such shook waves are examined in detail. Ionization is found to play a significant role in medium shock speed behaviour, particularly in determining the density jump.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bighel, L., Colmns, A. R. & Cramer, N. F. 1977 J. Plasma Phys. 18, 77.CrossRefGoogle Scholar
Chu, C. K. 1964 Phys. Fluids, 7, 1349.CrossRefGoogle Scholar
Chu, C. K. & Gross, R. A. 1969 Advances in Plasma Physics, vol. 2 ﹛ed. Simon, A. and Thompson, W. B.). Interscience.Google Scholar
Colours, A. R. & Mathers, C. D. 1979 Phys. Fluids. To be published.Google Scholar
Cramer, N. F. 1976 J. Plasma Phys. 14, 333.CrossRefGoogle Scholar
Cross, R. C. 1968 Phys. Fluids, 11, 985.CrossRefGoogle Scholar
Ddcon, V. A. & Woods, L. C. 1972 Memorandum CLM-M87. Culham Laboratory, UKAEA.Google Scholar
Prawin, H. & Felbnbok, P. 1965 Data for Plasmas in Local Thermodynamic Equilibrium. Gauthier-Villars.Google Scholar
Green, B. & May, R. M. 1965 Aust. J. Phys. 18, 363.CrossRefGoogle Scholar
James, B. W. 1969 Phys. Lett. 29A, 509.CrossRefGoogle Scholar
Kemp, N. H. & Petschek, H. E. 1959 Phys. Fluids, 2, 599.CrossRefGoogle Scholar
Leonard, B. P. 1973 J. Plasma Phys. 10, 13.CrossRefGoogle Scholar
May, R. M. & Tendys, J. 1965 Nucl. Fusion, 5, 144.CrossRefGoogle Scholar
Meekan, R. 1969 Columbia University Report No. 44.Google Scholar
Mordstte, P. 1971 Columbia University Report No. 56.Google Scholar
Moriette, P. 1972 Phys. Fluids, 15, 51.CrossRefGoogle Scholar
Stebbins, C. & Vlases, G. 1968 J. Plasma-Phys. 2, 633.CrossRefGoogle Scholar
Taussig, R. T. 1965 Phys. Fluids, 8, 1616.CrossRefGoogle Scholar
Taussig, R. T. 1966 Phys. Fluids, 9, 421.CrossRefGoogle Scholar
Taussig, R. T. 1967 Phys. Fluids, 10, 1145.CrossRefGoogle Scholar
Vlashs, G. 1964 Phys. Fluids, 7, 1388.Google Scholar
Wamson-MUNBO, C. N., Bighel, L., Collins, A. R., Cbamer, N. F. & Cross, R. C. 1975 Proceedings of the 6th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, vol. 2, p. 673. IAEA, Vienna.Google Scholar
Woods, L. C. 1965 J. Fluid Mech. 22, 689.CrossRefGoogle Scholar