Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T03:39:46.573Z Has data issue: false hasContentIssue false

Electrostatic ion cyclotron waves: Plasma heating, frequency shifts and linewidths

Published online by Cambridge University Press:  13 March 2009

Gregory Benford
Affiliation:
Physics Department, University of California, Irvine, California 92717

Abstract

Ion cyclotron waves cannot be quasilinearly stabilized in Q-machine experiments because the electron distribution function does not have time to flatten while electrons pass through the plasma volume. We invoke a turbulently dissipative (or ‘resonance broadening’) model to explain the observed steady-state mode saturation. We give a qualitative picture of the important nonlinear features and their implications for plasma heating experiments. We extend the turbulently dissipative model to give nonlinear frequency shifts and a description of the mode linewidths in steady-state experiments. Turbulent resistivity is calculated and found to be unobservably small compared to the classical value. Implications for further experiments are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benford, G., Rynn, N., Thomson, J. J. & Williamson, W. S. 1974 Phys. Fluids, 17, 1001.CrossRefGoogle Scholar
Benford, G. & Thomson, J. J. 1972 Phys. Fluids, 15, 1496.CrossRefGoogle Scholar
Bers, A., Coppi, B., Dupree, T., Kulsrud, R. & Santini, F. 1971 Plasma Physics and Controlled Nuclear Fusion Research, Vol. II, I.A.E.A., Vienna, 247.Google Scholar
Cook, I. & Taylor, J. B. 1973 J. Plasma Phys. 9, 131.CrossRefGoogle Scholar
Correll, D. L., Rynn, N. & Bohmer, H. 1976 Phys. Fluids, 18, 1800.CrossRefGoogle Scholar
Dakin, D. R., Tajima, T., Benford, G. & Rynn, N. 1976 J. Plasma Phys. 15, 175.CrossRefGoogle Scholar
Drummond, W. E. & Rosenbluth, M. N. 1962 Phys. Fluids, 5, 1507.CrossRefGoogle Scholar
Dum, C. & Dupree, T. 1970 Phys. Fluids, 13, 2064.CrossRefGoogle Scholar
Rostoker, N. 1961 Nuclear Fusion, 1, 101.CrossRefGoogle Scholar
Rynn, N., Dakin, D. R., Correll, D. L. & Benford, G. 1974 Phys. Rev. Lett. 33, 765.CrossRefGoogle Scholar
Thomson, J. J., Benford, G., Rynn, N. & Williamson, W. S. 1974 Phys. Fluids, 17, 1008.CrossRefGoogle Scholar
Thomson, J. J. & Benford, G. 1972 Phys. Rev. Lett. 28, 590.CrossRefGoogle Scholar
Weinstock, J. 1972 Phys. Fluids, 15, 454.CrossRefGoogle Scholar
Wharton, C., Korn, P., Prono, D., Robertson, S., Auer, P. & Dum, C. 1971 Plasma Physics and Controlled Fusion Research, Vol. II, I.A.E.A., Vienna, 125.Google Scholar