Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T07:49:44.229Z Has data issue: false hasContentIssue false

Enhancement in the electromagnetic beam-plasma instability due to ion streaming

Published online by Cambridge University Press:  16 December 2011

NITIN SHUKLA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal (anne.stockem@ist.utl.pt)
A. STOCKEM
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal (anne.stockem@ist.utl.pt)
F. FIÚZA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal (anne.stockem@ist.utl.pt)
L. O. SILVA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, Lisboa, Portugal (anne.stockem@ist.utl.pt)

Abstract

We investigate the Weibel instability in counter-propagating electron–ion plasmas with focus on the ion contribution, considering a realistic mass ratio. A generalized dispersion relation is derived from the relativistic theory by assuming an initially anisotropic temperature, which is represented by a waterbag distribution in momentum space, which shows an enhanced growth rate due to ion response. Two-dimensional particle-in-cell simulations support the theoretical analysis, showing a further amplification of magnetic field on ion time scale. The effect of an initial anisotropic temperature is investigated showing that the growth rate is monotonously decreased if the transverse spread is increased. Nevertheless, the presence of ions generates that the instability can develop for significantly higher electron temperatures. Suppression of oblique mode is also explored by introducing a parallel velocity spread.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birk, G. T., Crusius-Wätzel, A. R. and Lesch, H. 2001 Astrophys. J. 559, 96.CrossRefGoogle Scholar
Bludman, S. A., Watson, K. M. and Rosenbluth, M. N. 1960 Phys. Fluids 3, 747.CrossRefGoogle Scholar
Bret, A., Gremillet, L. and Bénisti, D. 2010 Phys. Rev. E 81, 036402.CrossRefGoogle Scholar
Bret, A., Gremillet, L. and Deutsch, C. 2007 Nucl. Instrum. Methods Phys. Res. A 577, 317.CrossRefGoogle Scholar
Davidson, R. C., Hammer, D. A., Haber, I. and Wagner, C. E. 1972 Phys. Fluids 15, 317.CrossRefGoogle Scholar
Drenkhahn, G. and Spruit, H. C. 2002 Astron. Astrophys. 391, 1141.CrossRefGoogle Scholar
Fonseca, R. A., Silva, L. O., Tonge, J., Hemker, R. G., Dawson, J. M. and Mori, W. B. 2002 a IEEE Trans. Plasma Sci. 30, 28.CrossRefGoogle Scholar
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S., Katsouleas, T. et al. , 2002 b Lect. Notes Comput. Sci. 2331, 342.CrossRefGoogle Scholar
Frederiksen, J. T., Hededal, C. B., Haugbølle, T. and Nordlund, A. 2004 Astrophys. J. 608, L13.CrossRefGoogle Scholar
Honda, M., Meyer-Ter-Vehn, J. and Pukhov, A. 2000 Phys. Rev. Lett. 85, 2128.CrossRefGoogle Scholar
Kirk, J. G. and Skjæraasen, O. 2003 Astrophys. J. 591, 366.CrossRefGoogle Scholar
Kong, X., Park, J., Ren, C., Sheng, Z. M. and Tonge, J. W. 2009 Phys. Plasmas 16, 032107.CrossRefGoogle Scholar
Lyubarsky, Y. and Kirk, J. G. 2001 Astrophys. J. 547, 437.CrossRefGoogle Scholar
Mason, R. J. 2006 Phys. Rev. Lett. 96, 035001.CrossRefGoogle Scholar
Medvedev, M. V. and Loeb, A. 1999 Astrophys. J. 526, 697.CrossRefGoogle Scholar
Mendonça, J. T., Norreys, P., Bingham, R. and Davies, J. R. 2005 Phys. Rev. Lett. 94, 245002.CrossRefGoogle Scholar
Norreys, P. A., Beg, F. N., Sentoku, Y., Silva, L. O., Smith, R. A. and Trines, R. M. G. M. 2009 Phys. Plasmas 16, 041002.CrossRefGoogle Scholar
Panaitescu, A. and Kumar, P. 2002 Astrophys. J. 571, 779.CrossRefGoogle Scholar
Piran, T. 2004 Rev. Mod. Phys. 76, 1143.CrossRefGoogle Scholar
Ren, C., Tzoufras, M., Tsung, F. S., Mori, W. B., Amorini, S., Fonseca, R. A., Silva, L. O., Adam, J. C. and Heron, A. 2004 Phys. Rev. Lett. 93, 185004.CrossRefGoogle Scholar
Schlickeiser, R. 2002 Cosmic Ray Astrophysics. Astronomy and Astrophysics Library; Physics and Astronomy Online Library. Berlin: Springer.CrossRefGoogle Scholar
Shukla, N., Shukla, P. and Stenflo, L. 2009 Phys. Rev. E 80, 027401.CrossRefGoogle Scholar
Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori, W. B. and Medvedev, M. V. 2003 Astrophys. J. 596, L121.CrossRefGoogle Scholar
Silva, L. O., Fonseca, R. A., Tonge, J. W., Mori, W. B. and Dawson, J. M. 2002 Phys. Plasmas 9, 2458.CrossRefGoogle Scholar
Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
Wiersma, J. and Achterberg, A. 2004 Astron. Astrophys. 428, 365.CrossRefGoogle Scholar
Yang, T. B., Arons, J. and Langdo, A. B. 1994 Phys. Plasmas 1, 3059.CrossRefGoogle Scholar
Yoon, P. H. and Davidson, R. C. 1987 Phys. Rev. Lett. A 35, 2718.CrossRefGoogle Scholar