Article contents
Filamentation of a laser beam in a strongly ionized magnetoplasma
Published online by Cambridge University Press: 13 March 2009
Abstract
On a time-scale of the order of the energy relaxation time, a high power laser beam, propagating in a strongly ionized magnetoplasma is shown to be unstable for small scale fluctuations. In the domain r0 < [mi/m]½ λm. v2/[ω2c + v2] (r0, λm, v, ωc, and m being respectively the spatial scale of the perturbation, electron mean free path, collision frequency, cyclotron frequency and mass and mi being the ion mass) the main loss of excess electron energy is due to thermal conduction; in the other limit collisional loss dominates. It is shown that for small scale fluctuations the growth rate increases with (i) increasing magnetic field and (ii) increasing r0. For large scale fluctuations the magnetic field does not show any effect; the growth rate, however, diminishes with increasing spatial scale. A maximum growth rate is obtained both for some optimum value of scale length and for intensity of the main beam.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1978
References
REFERENCES
- 2
- Cited by