Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T23:46:47.386Z Has data issue: false hasContentIssue false

The flow field induced by spherical blast waves propagating into perfect and imperfect dusty gases

Published online by Cambridge University Press:  13 March 2009

Z. Rakib
Affiliation:
The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
M. Mond
Affiliation:
The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
G. Ben-Dor
Affiliation:
The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
O. Igra
Affiliation:
The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel

Abstract

The flow fields induced by spherical blast waves propagating into dusty gases are investigated numerically. In the case of a moderate blast wave the gaseous phase is assumed to be perfect, while for strong blast waves real-gas effects are accounted for. The effects of the dust loading ratio and the initial energy used to generate the blast on the suspension properties are investigated and discussed in detail. Owing to the fact that the physics involved inside the exploding charge is very complicated, the present solution is appropriate for simulating the flow induced by the blast wave outside the exploding sphere only.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belugin, N. I. & Markov, Yu. S. 1973 Questions of Mathematical Physics and Oscillation Theory 2nd edn (in Russian). Ivanov.Google Scholar
Ben-Dor, G. & Igra, O. 1982 J. Plasma Phys. 27, 377.CrossRefGoogle Scholar
Book, D. L., Boris, J. P. & Haim, K. 1975 J. Comp. Phys. 18, 248.CrossRefGoogle Scholar
Boris, J. P. & Book, D. L. 1973 J. Comp. Phys. 11, 38.CrossRefGoogle Scholar
Boris, J. P. & Book, D. L. 1976 J. Comp. Phys. 20, 397.CrossRefGoogle Scholar
Boyer, D. W. 1959 UTIAS Rep. no. 58.Google Scholar
Boyer, D. W., Brode, H. L., Glass, I. I. & Hall, J. G. 1958 UTIAS Rep. no. 48.CrossRefGoogle Scholar
Brode, H. L. 1955 J. Appl. Phys. 26, 766.CrossRefGoogle Scholar
Brode, H. L. 1959 Phys. Fluids, 2, 217.CrossRefGoogle Scholar
Carrier, G. F. 1958 J. Fluid Mech. 4, 376.CrossRefGoogle Scholar
Chorin, A. J. 1976 J. Comp. Phys. 22, 517.CrossRefGoogle Scholar
Courant, R., Friedrichs, K. O. & Levy, H. 1928 Math. Ann. 100, 32.CrossRefGoogle Scholar
Glimm, J. 1965 Commun. Pure Appl. Maths, 18, 697.CrossRefGoogle Scholar
Gerber, N. & Bartos, J. M. 1974 AIAA J. 12, 120.CrossRefGoogle Scholar
Higashino, F. 1983 Z. Naturforsch. 38a, 399.CrossRefGoogle Scholar
Higashino, F. 1985 Trans. Jpn Soc. Aero. Space Sci. 28, 161.Google Scholar
Hilsenrath, H., Klein, M. & Woolley, H. W. 1959 Arnold Engng Devel. Center Rep. AEDC-TDR-59–20.Google Scholar
Honma, H., Glass, I. I., Holst-Jensen, O. & Tsumita, Y. 1981 Shock Tubes and Waves (ed. Treanor, C. E. & Hall, J. G.), p. 342. State University of New York Press, Albany.Google Scholar
Honma, H., Tsumita, Y. & Glass, I. I. 1980 Proceedings of Symposium on Dynamics of Space Flights, Institute of Space and Aeronautical Sciences, University of Tokyo, 21 11 1980.Google Scholar
Igra, O. & Ben-Dor, G. 1980 Israel J. Tech. 18, 159.Google Scholar
Igra, O. & Ben-Dor, G. 1984 J. Plasma Phys. 31, 115.CrossRefGoogle Scholar
Igra, O., Ben-Dor, G. & Rakib, Z. 1985 Int. J. Multiphase Flow, 11, 121.CrossRefGoogle Scholar
Igra, O., Elperin, T. & Ben-Dor, G. 1987 Proc. Roy. Soc. A414, 197.Google Scholar
Kaufman, A. S., Limonov, B. S. & Tarakanov, S. V. 1978 Thermophysics and Physical Hydrodynamics of the USSR (in Russian). Novosibirsk.Google Scholar
Kriebel, A. R. 1964 Trans. ASME. D: J. Basic Engng, 86, 655.CrossRefGoogle Scholar
Law, C. K. & Bristow, M. 1969 UTIAS Tech. Note no. 148.Google Scholar
Liepmann, H. W. & Roshko, A. 1957 Elements of Gasdynamics. Wiley.CrossRefGoogle Scholar
Marble, F. E. 1970 Ann. Rev. Fluid Mech. 2, 397.CrossRefGoogle Scholar
Mazor, G., Ben-Dor, G. & Igra, O. 1985 AIAA J. 23, 636.Google Scholar
Milizzano, F., Oved, Y., Clements, R. M. & Smy, P. R. 1979 J. Phys. D 12. 1039.Google Scholar
Rakib, Z. 1985 Ph.D. thesis, Department of Mechanical Engineering, Ben-Gurion University of the Negev.Google Scholar
Rakib, Z., Igra, O. & Ben-Dor, G. 1984 Trans. ASME. I: J. Fluids Engng, 106, 154.Google Scholar
Rudinger, G. 1964 Phys. Fluids, 7, 658.CrossRefGoogle Scholar
Rudinger, G. 1973 Appl. Mech. Rev. 26, 273.Google Scholar
Sabersky, R. H., Acosta, A. J. & Hauptmann, E. G. 1971 Fluid Flow, 2nd edn.McMillan.Google Scholar
Saito, T. & Glass, I. I. 1979 UTIAS Rep. no. 240.Google Scholar
Schlichting, H. 1960 Boundary Layer Theory. McGraw-Hill.Google Scholar
Sod, G. A. 1977 J. Fluid Mech. 83, 789.CrossRefGoogle Scholar
Sommerfeld, M. 1985 Experiments in Fluids, 3, 197.CrossRefGoogle Scholar
Von Neumann, J. & Richtmyer, R. D. 1950 J. Appl. Phys. 21, 232.CrossRefGoogle Scholar
Yun, K. S., Weissman, S. & Mason, E. A. 1962 Phys. Fluids, 5, 672.CrossRefGoogle Scholar