Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T22:22:35.691Z Has data issue: false hasContentIssue false

Free expansion of a plasma with two electron temperatures

Published online by Cambridge University Press:  13 March 2009

L. M. Wickens
Affiliation:
Department of Engineering Science, Oxford, U.K. and University College, Oxford University, Oxford, U. K.
J. E. Allen
Affiliation:
Department of Engineering Science, Oxford, U.K. and University College, Oxford University, Oxford, U. K.

Abstract

A theory for the free expansion of a plasma with two electron temperatures is presented. It is shown that in the case of a laser-produced plasma expansion the ions separate into a fast and a slow component, and that the number of fast ions is particularly sensitive to the hot to cold electron temperature ratio. If the electron temperature ratio is ≳ 10 then the quasi-neutral self-similar solution breaks down. The regions in the rarefaction expansion where the quasi-neutrality assumption fails are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. E. & Andrews, J. G. 1970 J. Plasma Phys. 4, 187.CrossRefGoogle Scholar
Bezzerides, B., Forslund, D. W. & Lindmann, E. L. 1978 Phys. Fluids, 21, 2179.CrossRefGoogle Scholar
Bohm, D. 1949 The Characteristics of Electrical Discharges in Magnetic Fields. (ed. Gutherie, A. and Wakerling, R. K.), ch. 3. McGraw-Hill.Google Scholar
Brueckner, K. A. 1977 Nucl. Fusion, 17, 1257.CrossRefGoogle Scholar
Campbell, P. M., Hammerling, P., Johnson, R. R., Kubis, J. J., Mayer, F. J. & Slater, D. C. 1976 Proceedings of 6th International Conference on Plasma Physics and Controlled Thermonuclear Reactions. IAEA.Google Scholar
Campbell, P. M., Johnson, R. R., Mayer, F. J., Powers, L. V. & Slater, D. C. 1977 Phys. Rev. Lett. 39, 274.CrossRefGoogle Scholar
Crow, J. E., Auer, P. L. & Allen, J. E. 1975 J. Plasma Phys. 14, 65.CrossRefGoogle Scholar
Estabrook, K. & Kruer, W. L. 1978 Phys. Rev. Lett. 37, 489.Google Scholar
Gurevich, A. V., Pariiskaya, L. V. & Pitaevskii, L. P. 1966 Soviet Phys. JETP, 22, 449.Google Scholar
Jones, W. D., Lee, A., Gleman, S. & Douce, H. 1975 Phys. Rev. Lett. 35, 1349.CrossRefGoogle Scholar
Key, M. H.et al. 1977 S.R.C. Rutherford Laboratory Central Laser Laboratory Report LD/77/01.Google Scholar
Lindmann, E. L. 1977 J. Physique, 38, C69.Google Scholar
Phipps, C. R. & Bershader, D. 1978 J. Plasma Phys. 19, 267.CrossRefGoogle Scholar
Spitzer, L. 1956 Physics of Fully Ionized Gases. Intenscience.Google Scholar
Wickens, L. M., Allen, J. E. & Rumsby, P. T. 1978 Phys. Rev. Lett. 41, 243.CrossRefGoogle Scholar