Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T07:56:45.959Z Has data issue: false hasContentIssue false

Full-wave calculations of the O-X mode conversion process

Published online by Cambridge University Press:  13 March 2009

F. R. Hansen
Affiliation:
Association EURATOM - Risø National Laboratory, DK-4000 Roskilde, Denmark
J. P. Lynov
Affiliation:
Association EURATOM - Risø National Laboratory, DK-4000 Roskilde, Denmark
C. Maroli
Affiliation:
Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Via Bassini 15, I-20133 Milano, Italy
V. Petrillo
Affiliation:
Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Via Bassini 15, I-20133 Milano, Italy

Abstract

A two-point boundary-value problem has been formulated that describes the conversion between ordinary (O) and extraordinary (X) wave modes in a cold inhomogeneous plasma. Numerical solutions to this problem have been obtained for various values of the WKB parameter k0L; where k0 is the vacuum wavenumber and L the density-gradient scale length. The results are compared with three different theoretical expressions for the O-X mode conversion efficiency derived by others in the WKB limit of k0 L ≫ l. Most of the results presented in this paper are obtained for a collisionless plasma with finite density near the plasma cut-off density. However, some examples are also given of wave propagation from vacuum. In these examples, collision effects are added to the equations in order to remove the singularity otherwise present at the position of the upper hybrid resonance layer.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appert, K., Hellsten, T., Vaclavik, J. & Villard, L. 1985 Comp. Phys. Commun. 40, 73.CrossRefGoogle Scholar
Ascher, U., Christiansen, J. & Russell, R. D. 1979 Math. Comp. 33, 659.CrossRefGoogle Scholar
Bennett, J. A. 1976 Math. Proc. Camb. Phil. Soc. 80, 527.CrossRefGoogle Scholar
Ellis, G. R. 1953 J. Atmos. Terr. Phys. 3, 263.CrossRefGoogle Scholar
Ellis, G. R. 1956 J. Atmos. Terr. Phys. 8, 43.CrossRefGoogle Scholar
Fidone, I., Giruzzi, G., Krivenski, V. & Ziebel, L. F. 1986 Phys. Fluids, 29, 803.CrossRefGoogle Scholar
Ginzburg, V. L. 1961 Propagation of Electromagnetic Waves in Plasma. Gordon and Breach.Google Scholar
Golant, V. E. & Piliya, A. D. 1972 Soviet Phys. Uspekhi, 14, 413.CrossRefGoogle Scholar
Hansen, F. R., Lynov, J. P. & Michelsen, P. 1985 Plasma Phys. Contr. Fusion, 27, 1077.CrossRefGoogle Scholar
Pitteway, M. L. V. 1965 Phil. Trans. R. Soc. Lond. A 257, 219.Google Scholar
Maekawa, T., Tanaka, S., Terumichi, Y. & Hamada, Y. 1978 Phys. Rev. Lett. 40, 1379.CrossRefGoogle Scholar
Maekawa, T., Tanaka, S., Terumichi, Y. & Hamada, Y. 1980 J. Phys. Soc. Jpn, 48, 247.CrossRefGoogle Scholar
MjøLhus, E. 1983 J. Plasma Phys. 30, 179.CrossRefGoogle Scholar
MjøLhus, E. 1984 J. Plasma Phys. 31, 7.CrossRefGoogle Scholar
MjøLhus, E. 1985 Generalized Budden resonance tunnelling. Institute Report, IMR, University of Tromsø.Google Scholar
MjøLhus, E. 1987 J. Plasma Phys. 38, 1.CrossRefGoogle Scholar
Preinhaelter, J. 1975 Czech. J. Phys. B 25, 39.CrossRefGoogle Scholar
Preinhaelter, J. & Kopecky, V. 1973 J. Plasma Phys. 10, 1.CrossRefGoogle Scholar
Weitzner, R. & Batchelor, D. B. 1979 Phys. Fluids, 22, 1355.CrossRefGoogle Scholar
Zharov, A. A. 1984 Soviet J. Plasma Phys. 10, 642.Google Scholar