Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T15:40:33.075Z Has data issue: false hasContentIssue false

Generation of sheared flows by drift waves in a strongly magnetized electron–positron–ion plasma

Published online by Cambridge University Press:  22 June 2010

NITIN SHUKLA
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany (ps@tp4.ruhr-uni-bochum.de)

Abstract

It is shown that sheared/zonal flows (ZFs) can be nonlinearly excited by incoherent drift waves (DWs) in a strongly magnetized non-uniform plasma composed of electrons, positrons and ions. The dynamics of incoherent DWs in the presence of ZFs is governed by a wave-kinetic equation. The governing equation for ZFs in the presence of nonlinear forces (associated with nonlinear ion polarization and nonlinear ion-diamagnetic drifts) of the DWs is deduced by combining the Poisson equation, as well as the e-p-i continuity equations, together with appropriate plasma particle velocities in the DW and the ZF fields. Standard techniques are used to derive a nonlinear dispersion relation, which depicts two classes of the modulational instability of the DWs against the ZFs. Non-thermal ZFs can reduce the turbulent cross-field particle transport in non-uniform, strongly magnetized e-p-i plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Misner, W., Throne, K. and Wheeler, J. A. 1973 Gravitation. San Francisco, CA: Freeman, p. 763.Google Scholar
[2]Rees, M. J. 1983 In: The Very Early Universe (eds. Gibbons, G. W., Hawking, S. W. and Siklos, S.). Cambridge, UK: Cambridge University Press.Google Scholar
[3]Miller, H. R. and Witta, P. 1987 Active Galactic Nuclei. Berlin: Springer, p. 202.Google Scholar
[4]Bergman, M. C., Blandford, R. D. and Rees, M. J. 1984 Rev. Mod. Phys. 56, 255.Google Scholar
[5]Goldreich, P. and Julian, W. H. 1969 Astrophys. J. 157, 869.CrossRefGoogle Scholar
[6]Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.CrossRefGoogle Scholar
[7]Michael, F. C. 1991 Theory of Neutron Star Magnetosphere. Chicago, IL: Chicago University Press.Google Scholar
[8]Rees, M. J. 1971 Nature (London) 229, 312.Google Scholar
[9]Burnes, M. L. 1983 In: Positron-Electron Pairs in Astrophysics (eds. Burnes, M. L., Harding, A. K. and Ramaty, R.). New York: AIP.Google Scholar
[10]Gurevich, A. V., Beskin, V. S. and Istomin, Y. N. 1983 Physics of the Pulsar Magnetosphere. Cambridge, UK: Cambridge University Press.Google Scholar
[11]Tandberg-Hansen, E. and Emshie, A. G. 1988 The Physics of Solar Flares. Cambridge, UK: Cambridge University Press, p. 124.Google Scholar
[12]Berezhiani, V. I., Tskhakaya, D. D. and Shukla, P. K. 1992 Phys. Rev. A 46, 6608.CrossRefGoogle Scholar
[13]Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887; Gahn, C., Tsakiris, G. D., Pretzler, G. et al. 2000 Appl. Phys. Lett. 77, 3662; Wilks, S. C., Chen, H. and Liang, E. 2005 Astrophys. Space Sci. 298, 347.Google Scholar
[14]Helander, P. and Ward, D. J. 2003 Phys. Rev. Lett. 90, 135004.Google Scholar
[15]Shukla, P. K. et al. 1986 Phys. Rep. 138, 1; Yu, M. Y., Shukla, P. K. and Stenflo, L. 1986 Astrophys. J. 309, L63.CrossRefGoogle Scholar
[16]Berezhiani, V. I. and Mahajan, S. M. 1994 Phys. Rev. Lett. 73, 1110; 1995 Phys. Rev. E 52, 1968.CrossRefGoogle Scholar
[17]Popel, S. I., Vladimirov, S. V. and Shukla, P. K. 1995 Phys. Plasmas 2, 716.CrossRefGoogle Scholar
[18]Mahmood, S., Mushtaq, A. and Saleem, H. 2003 New J. Phys. 5, 28.Google Scholar
[19]Stenflo, L., Shukla, P. K. and Yu, M. Y. 1985 Astrophys. Space Sci. 117, 303.CrossRefGoogle Scholar
[20]Shukla, P. K. et al. 1981 Phys. Rev. A 23, 321; 1984 Phys. Rep. 105, 227.CrossRefGoogle Scholar
[21]Shukla, P. K. and Stenflo, L. 2002 Eur. Phys. J. D 20, 103; Shukla, P. K. and Shaikh, D. 2009 Phys. Lett. A 374, 286.Google Scholar
[22]Smolyakov, A. I., Diamond, P. H. and Malkov, M. 2000 Phys. Rev. Lett. 84, 3491.CrossRefGoogle Scholar
[23]Smolyakov, A. I., Diamond, P. H. and Shevchenko, V. I. 2000 Phys. Plasmas 7, 1349.CrossRefGoogle Scholar
[24]Diamond, P. H., Itoh, S. I., Itoh, K. and Hahm, T. S. 2005 Plasma Phys. Contr. Fusion 47, R35; Fujisawa, A. 2009 Nucl. Fusion 49, 013001.CrossRefGoogle Scholar
[25]Shukla, P. K., Birk, G. T. and Bingham, R. 1995 Geophys. Res. Lett. 22, 671.CrossRefGoogle Scholar
[26]Hasegawa, A. A. 1975 Plasma Instabilities and Nonlinear Effects. Berlin: Springer.Google Scholar
[27]Weiland, J. 2000 Collective Modes in Inhomogeneous Plasma. Bristol, UK: Institute of Physics.Google Scholar
[28]Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic.Google Scholar
[29]Shukla, P. K., Yu, M. Y. and Spatschek, K. H. 1975 Phys. Fluids 18, 265; Yu, M. Y., Spatschek, K. H. and Shukla, P. K. 1974 Z. Naturforsch A 29, 1736; Shukla, P. K. and Stenflo, L. 2005 Phys. Plasmas 12, 084502.CrossRefGoogle Scholar