Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T06:53:33.484Z Has data issue: false hasContentIssue false

Hydromagnetic equations for collisionless plasmas in strong magnetic fields

Published online by Cambridge University Press:  13 March 2009

S. Duhau
Affiliation:
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón N° 1 – Ciudad Universitaria, 1428 Buenos Aires, Argentina

Abstract

The Chew, Goldberger & Low equations are a one-fluid system for the thermodynamic variables of the ions that are coupled to the electrons only through the electromagnetic variables. The magnitude of these variables in a collisionless plasma is re-examined in the present paper and it is found that, in the limit in which the Larmor radius and the electron-to-ion mass ratio are both zero, the current, in the plane normal to the magnetic field, is entirely transported by the electrons in the reference frame that moves with the bulk velocity. The first-order electric field contributes to the ion equation of motion with a zero-order term that couples the thermodynamic variables of both species. So the energy equation of the electrons must now be included in the equation set; to close this equation, a simple mathematical representation of the measured quasi-stationary velocity distribution function of this species is used. A two-fluid equation system in the limit in which the Larmor radius and the electron-to-ion mass ratio are both zero is then found.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acuna, M. & Whang, Y. C. 1976 Astrophys. J. 203, 790.CrossRefGoogle Scholar
Burlaga, L. F. 1971 Space Sci. Rev. 11, 600.Google Scholar
Burlaga, L. F. & Turner, J. M. 1976 J. Geophys. Res. 81, 73.CrossRefGoogle Scholar
Chew, G. F., Goldberger, M. L. & Low, F. E. 1956 Proc. Roy. Soc. A 236, 112.Google Scholar
Duhau, S. 1974 Thesis. Universidad de Buenos Aires.Google Scholar
Duhau, S. 1979 Geoacta, 10, 285.Google Scholar
Duhau, S. 1984 Geoacta, 12, in press.Google Scholar
Duhau, S. & Gratton, J. 1975 J. Plasma Phys. 13, 451.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J. & Lewis, H. R. 1973 Phys. Rev. Lett. 30, 271.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J., Montgomery, M. D. & Gary, S. P. 1975 J. Geophys. Res. 80, 4181.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J., Gosling, J. T. & Lemons, D. S. 1979 J. Geophys. Res. 84, 6621.CrossRefGoogle Scholar
Grad, H. 1949 Comm. Pure Appl. Phys. 2, 331.Google Scholar
Grad, H. 1967 Proc. Symposia in App. Math. 18, 162.CrossRefGoogle Scholar
Hundhausen, A. J., Bame, S. J. & Ness, N. F. 1967 J. Geophys. Res. 72, 5265.CrossRefGoogle Scholar
Klimontovich, Y. L. & Silin, V. P. 1961 Soviet Phys. JEPT, 13, 852.Google Scholar
Namikawa, T. & Hamabata, H. 1981 J. Plasma Phys. 26, 95.CrossRefGoogle Scholar
Oraevskii, V., Chodura, R. & Feneberg, W. 1968 Plasma Phys. 10, 819.Google Scholar
Scarf, F. L. 1969 Space Sci. 17, 595.CrossRefGoogle Scholar
Schultz, M. & Eviatar, A. 1973 J. Geophys. Res. 78, 3948.CrossRefGoogle Scholar
Scudder, J. & Olbert, S. 1979 J. Geophys. Res. 84, 2755.CrossRefGoogle Scholar
Shkarofsky, I. P., Johnston, T. W. & Batchinsky, M. P. 1962 The particle kinetics of plasmas. Addison-Wesley.Google Scholar
Whang, Y. C. 1971 Astrophys. J. 178, 221.CrossRefGoogle Scholar