Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T21:33:50.306Z Has data issue: false hasContentIssue false

In-situ diagnostics of hydrocarbon dusty plasmas using quantum cascade laser absorption spectroscopy and mass spectrometry

Published online by Cambridge University Press:  14 July 2014

K. Ouaras
Affiliation:
LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 av. Jean-Baptiste Clément, 93430 Villetaneuse, France
L. Colina Delacqua
Affiliation:
LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 av. Jean-Baptiste Clément, 93430 Villetaneuse, France
G. Lombardi*
Affiliation:
LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 av. Jean-Baptiste Clément, 93430 Villetaneuse, France
J. Röpcke
Affiliation:
INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
M. Wartel
Affiliation:
LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 av. Jean-Baptiste Clément, 93430 Villetaneuse, France GREMI, UMR7344, CNRS/Université d'Orléans, site de Bourges, Rue G. Berger, 18028 Bourges, France
X. Bonnin
Affiliation:
LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 av. Jean-Baptiste Clément, 93430 Villetaneuse, France
M. Redolfi
Affiliation:
LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 av. Jean-Baptiste Clément, 93430 Villetaneuse, France
K. Hassouni
Affiliation:
LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, 99 av. Jean-Baptiste Clément, 93430 Villetaneuse, France
*
Email address for correspondence: lombardi@lspm.cnrs.fr

Abstract

The formation of carbon nanoparticles in low pressure magnetized H2/CH4 and H2/C2H2 plasmas is investigated using infrared quantum cascade laser absorption, mass spectrometry, and electrostatic probe measurements. Results showed that dust formation is correlated to the presence of a significant amount of large positively charged hydrocarbon ions. Large negative ions or neutral hydrocarbon were not observed. These results, along with a qualitative comparison of diffusion and reaction characteristic, suggest that a positive ion may contribute to the growth of nanoparticles in hydrocarbon magnetized plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bapat, A.et al. 2007 A plasma process for the synthesis of cubic-shaped silicon nanocrystals for nanoelectronic devices. J. Phys. D Appl. Phys. 40, 2247.Google Scholar
Benedikt, J. 2010 Plasma-chemical reactions: low pressure acetylene plasmas. J. Phys. D Appl. Phys. 43, 043001.Google Scholar
Bouchoule, A. and Boufendi, L. 1994 Particulate formation and dusty plasma behaviour in argon-silane RF discharge. Plasma Sources Sci. Technol. 2, 204.Google Scholar
Chai, K. B.et al. 2009 Dust particle growth in RF silane plasmas using two-dimensional multi-pass laser light scattering. New J. Phys. 11, 103006.Google Scholar
Colina Delacqua, L. 2012 Modélisation/diagnostic de production de poussiéres dans un plasma H2 au contact d'une cible C/W. Contribution à l'étude des interactions plasma/surface dans les machines de fusion thermonucléaire. PhD thesis, Université Paris 13, France.Google Scholar
De Bleecker, K. 2006 Modelling of nano-particle coagulation and transport dynamics in dusty silane discharges. New J. Phys. 8, 178.CrossRefGoogle Scholar
Deschenaux, Ch.et al. 1999 Investigations of CH4, C2H2 and C2H4 dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry. J. Phys. D Appl. Phys. 32, 1876.Google Scholar
Janev, R. K.et al. 2006 Determination of chemical composition and charge state distribution of chemical erosion hydrocarbon fluxes. Phys. Scr. T124, 96100.Google Scholar
Langmuir, I. 1961 The collected works of Irving Langmuir (ed. Suits, G.) Macmillan, New York.Google Scholar
Michau, A.et al. 2011 Modeling of dust formation in a DC discharge. J. Nucl. Mater. 415, S1077.CrossRefGoogle Scholar
Pelletier, J. 1996 Distributed ECR Plasma Sources. In High Density Plasma Sources, pp. 380–425, edited by Oleg A. Popov in William Andrew Sciences applied Press. ISBN: 978-0-8155-1377-3Google Scholar
Pereira, J.et al. 2006 Characterization of a-CNx:H particles and coatings prepared in aCH4/N2 R.F plasma. Surf. Coat. Technol. 200, 64146419.Google Scholar
Pintassilgo, C. D.et al. 2010 Kinetic study of a N2–CH4 afterglow plasma for production of N-containing hydrocarbon species of Titan's atmosphere. Adv. Space Res. 46, 657671.Google Scholar
Rothman, L. S.et al. 2013 The HITRAN2012 molecular spectroscopic database (original research article). J. Quant. Spectrosc. Radiat. Transfer 130, 450.Google Scholar
Winter, J.et al. 2009 Dust formation in Ar/CH4 and Ar/C2H2 plasmas. Plasma Sources Sci. Technol. 18, 034010.Google Scholar