Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T20:58:03.605Z Has data issue: false hasContentIssue false

Interaction of Alfvén front with the plasma anomalous resistance layer

Published online by Cambridge University Press:  01 April 2007

N. MAZUR
Affiliation:
Institute of the Physics of the Earth, Moscow 123995, Russia
E. FEDOROV
Affiliation:
Institute of the Physics of the Earth, Moscow 123995, Russia
V. PILIPENKO
Affiliation:
Institute of the Physics of the Earth, Moscow 123995, Russia
A. LEONOVICH
Affiliation:
Institute of the Solar–Terrestrial Physics, Irkutsk 664033, Russia

Abstract.

The efficiency of the Alfvén impulse excitation in the auroral zone of the terrestrial magnetosphere upon the onset of the anomalous field-aligned resistance has been estimated. The impulsive disturbance excited during the onset of anomalous field-aligned resistance and electric field may signify the transition of a global magnetospheric instability into the explosive phase with positive feedback. We consider the self-consistent problem on excitation of anomalous resistance at the front of field-aligned current and reverse influence upon it from the induced currents. The analytical solution of the self-consistent problem has shown that during the entrance of field-aligned current front into the anomalous resistivity layer (ARL) an Alfvénic impulse is generated. The interaction of the external current with ARL results in the delay of the current growth. The impulse duration and delay time depend on the ratio between the Alfvén damping scale and external current width. The solution obtained indicates the possibility of using the Alfvénic impulse as an indicator of distant occurrence of anomalous resistance.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Kadomzev, B. B. 1964 Plasma turbulence. Rev. Plasma Phys. 4, 188339.Google Scholar
[2]Galeev, A. A. and Sagdeev, R. Z. 1973 Nonlinear plasma theory. Rev. Plasma Phys. 7, 3145.Google Scholar
[3]Fredricks, R. W., Scarf, F. L. and Russell, C. T. 1973 Field-aligned currents, plasma waves, and anomalous resistivity in the disturbed polar cusp. J. Geophys. Res. 78, 21332141.CrossRefGoogle Scholar
[4]Lysak, R. L. 1990 Electrodynamic coupling of the magnetosphere and ionosphere. Space Sci. Rev. 52, 3387.CrossRefGoogle Scholar
[5]Gudkova, V. A., Barsukov, V. M., Zeleny, L. M., Volosevich, A. V., Loginov, G. A. and Liperovsky, V. A. 1974 Turbulence in magnetospheric plasma and damping of Pi2 variations. Geomagn. Aeronomy 14, 764766.Google Scholar
[6]Liperovsky, V. A. and Pudovkin, M. I. 1983 Anomalous Resistivity and Double Layers in the Magnetospheric Plasma. Moscow: Nauka, p. 181 (in Russian).Google Scholar
[7]Trakhtenhertz, V. Yu. and Feldstein, A. Ya. 1985 About dissipation of Alfvén waves in the layer with anomalous resistance. Geomag. Aeronomy 25, 334336.Google Scholar
[8]Tikhonchuk, V. T. and Bychenkov, V. Y. 1995 Effect of anomalous resistivity on MHD wave damping. J. Geophys. Res. 100, 95359538.CrossRefGoogle Scholar
[9]Lysak, R. L. 1991 Feedback instability of the ionospheric resonant cavity. J. Geophys. Res. 96, 15531568.CrossRefGoogle Scholar
[10]Pokhotelov, O. A., Khruschev, V., Parrot, M., Senchenkov, S. and Pavlenko, V. P. 2001 Ionospheric Alfvén resonator revisited: Feedback instability. J. Geophys. Res. 106, 25813–25 824.Google Scholar
[11]Arykov, A. A. and Maltsev, Yu. P. 1983 Generation of Alfvén waves in an anomalous resistivity region. Planet. Space Sci. 31, 267273.CrossRefGoogle Scholar
[12]Pilipenko, V., Mazur, N., Fedorov, E., Uozumi, T. and Yumoto, K. 2005 Excitation of Alfvén impulse by the anomalous resistance onset on the auroral field lines. Ann. Geophys. 23, 14551465.CrossRefGoogle Scholar
[13]Kindel, J. M. and Kennel, C. F. 1971 Topside current instabilities. J. Geophys. Res 76, 30553078.CrossRefGoogle Scholar
[14]Streltsov, A. V. and Lotko, W. 2003 Reflection and absorption of Alfvénic power in the low-altitude magnetosphere. J. Geophys. Res. 108, 8016, doi:10.1029/2002JA009425.Google Scholar
[15]Vogt, J. 2002 Alfvén wave coupling in the auroral current circuit. Surveys Geophys. 23, 335377.CrossRefGoogle Scholar
[16]Fedorov, E., Pilipenko, V. and Engebretson, M. J. 2001 ULF wave damping in the auroral acceleration region. J. Geophys. Res. 106, 62036212.CrossRefGoogle Scholar
[17]Liou, K., Meng, C.-I., Newell, P. T., Takahashi, K., Ohtani, S.-I., Lui, A. T. Y., Brittnacher, M. and Parks, G. 2000 Evaluation of low-latitude Pi2 pulsations as indicators of substorm onset using Polar ultraviolet imagery. J. Geophys. Res. 105, 24952505.CrossRefGoogle Scholar
[18]Shiokawa, K., et al. . 1998 High-speed ion flow, substorm current wedge, and multiple Pi2 pulsations. J. Geophys. Res. 103, 44914508.CrossRefGoogle Scholar
[19]Kepko, L., Kivelson, M. G. and Yumoto, K. 2001 Flow bursts, braking, and Pi2 pulsations. J. Geophys. Res. 106, 19031915.CrossRefGoogle Scholar
[20]Olson, J. V. 1999 Pi2 pulsations and substorm onsets: A review. J. Geophys. Res. 104, 1749917520.CrossRefGoogle Scholar
[21]Uozumi, T., Yumoto, K., Kawano, H., Yoshikawa, A., Olson, J. V., Solovyev, S. I. and Vershinin, E. F. 2000 Characteristics of energy transfer of Pi 2 magnetic pulsations: Latitudinal dependence. Geophys. Res. Lett. 27, 16191622.CrossRefGoogle Scholar
[22]Kohta, H., Yoshikawa, A. and Yumoto, K. 2005 Wave characteristics of Pi2 pulsations observated at the CPMN stations: Results from the independent component analysis. In Proc. of the Chapman Conf. on Magnetospheric ULF Waves, San Diego, CA, American Geophysical Union, Washington, p. 21 025.Google Scholar
[23]Aleksin, V. F., Makarenko, V. N., Pavitsky, P. D. and Khodusov, V. D. 1989 Modified Alfvén wave dispersion law in the weakly turbulent plasma with anisotropic pressure. Ukrainian Phys. J. 34, 17121715 (in Russian).Google Scholar