Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T02:18:41.211Z Has data issue: false hasContentIssue false

Ion turbulence and thermal transport in laser-produced plasmas

Published online by Cambridge University Press:  13 March 2009

H. C. Barr
Affiliation:
University of Wales, U.C.N.W., Bangor, LL57 2UW
T. J. M. Boyd
Affiliation:
University of Wales, U.C.N.W., Bangor, LL57 2UW

Abstract

In the interaction of high-intensity lasers with target plasmas the transport of thermal enelgy from the region in which the radiation is absorbed, to the cold dense plasma in the interior of the target, is an issue of central importance. It is also one of great complexity and as such is still largely unresolved. Ion-acoustic turbulence, self-generated magnetic fields and the inadequacy of classical transport theory have all been widely canvassed by way of explaining the observations which show thermal transport much reduced below what would be expected from conventional arguments.

In this paper the role of ion turbulence as a flux limiter is addressed with particular regard to recent experiments in which target plasmas were irradiated by 1·06 µm neodymium laser light at irradiances of 1015W cm−2 and greater. Saturation levels of the ion-acoustic turbulence driven by a combination of a suprathermal electron current and a heat flux have been calculated on the basis of perturbed orbit theory.

The levels of turbulence are found to be markedly lower than those commonly estimated from simple trapping arguments and too low to explain the thermal flux inhibition observed in the experiments used as a basis for the model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barr, H. C. 1974 Ph.D. Thesis, University of Wales.Google Scholar
Barr, H. C. & Boyd, T. J. M. 1976 J. Plasma Phys. 15, 279.CrossRefGoogle Scholar
Barr, H. C. & Boyd, T. J. M. 1977 J. Plasma Phys. 17, 503.CrossRefGoogle Scholar
Bekshtein, G. E. & Sagdeev, R. Z. 1970 JETP Lett. 11, 194.Google Scholar
Bell, A. R., Evans, R. G. & Nicholas, D. J. 1981 Phys. Rev. Lett. 46, 243.CrossRefGoogle Scholar
Benattar, R., Popovics, C., Sigel, R. & Virmont, J. 1979 Phys. Rev. Lett. 42, 766.CrossRefGoogle Scholar
Biskamp, D. & Chodura, R. 1971 Phys. Rev. Lett. 27, 1553.CrossRefGoogle Scholar
Biskamp, D. & Chodura, R. 1973 Phys. Fluids, 16, 893.CrossRefGoogle Scholar
Boyd, T. J. M. 1978 Proceedings of 11th International Symposium on Shock Waves, p. 156. University of Washington Press.Google Scholar
Boyd, T. J. M., Cooke, D. & Humphreys-Jones, G. J. 1982 Phys. Lett. 88A, 140.CrossRefGoogle Scholar
Campbell, P. M., Johnson, R. R., Mayer, F. J., Powers, L. V. & Slater, D. C. 1977 Phys. Rev. Lett. 39, 274.CrossRefGoogle Scholar
Craig, A. D., Naxai, S., Summers, D. D. R. & Paul, J. W. M. 1974 Phys. Rev. Lett. 32, 975.CrossRefGoogle Scholar
Dawson, J. M., Kruter, W. L. & Rosen, B. 1973 Dynamics of Ionized Gases (ed. Imai, I. and Sato, K.). University of Tokyo Press.Google Scholar
Dum, C. T. 1978 Phys. Fluids, 21, 945, 956.CrossRefGoogle Scholar
Dum, C. T., Chodura, R. & Biskamp, D. 1974 Phys. Rev. Lett. 32, 1231.CrossRefGoogle Scholar
Dupree, T. H. 1966 Phys. Fluids, 9, 1773.CrossRefGoogle Scholar
Gray, D. R. & Kilkenny, J. D. 1980 Plasma Phys. 22, 81.CrossRefGoogle Scholar
Haas, R. A., Mead, W. C., Kruer, W. L., Phillion, D. W., Kornblum, H. N., Lindl, J. D., Macquigo, D. R. & Rupert, V. C. 1976 Phys. Rev. Lett. 37, 489.Google Scholar
Hamberger, S. M. & Jancarik, J. 1972 Phys. Fluids, 15, 825.CrossRefGoogle Scholar
Horton, W. & Brock, D. 1981 Phys. Fluids, 24, 509.CrossRefGoogle Scholar
Horton, W. & Choi, D. 1979 Phys. Reports, 49, 277.CrossRefGoogle Scholar
Kilkenny, J. B. et al. 1979 SRC Rutherford Laboratory Report RL.79.036, 4.10, 4.32.Google Scholar
Kruer, W. L. 1980 Phys. Fluids, 23, 1273.CrossRefGoogle Scholar
Lindman, E. L. 1977 Journ. de Physique, 38 (Supp. C6), 9.Google Scholar
Machalek, M. B. & Nielsen, P. 1973 Phys. Rev. Lett. 31, 439.CrossRefGoogle Scholar
Mclean, E. A., Griem, H. R., Decoste, R., Ripin, B. H., Stamper, J. A., Mcmahon, J. M. & Bodner, S. E. 1977 Appl. Phys. Lett. 31, 9.xCrossRefGoogle Scholar
Manheimer, W. M. 1977 Phys. Fluids, 30, 265.CrossRefGoogle Scholar
Paul, J. W. M., Daughney, C. C., Holmes, L. S., Rumsby, P. T., Craig, A. D., Murray, E. L., Summers, B. B. R. & Beaulieu, J. 1971 Proceedings of 5th International Conference on Plasma Physics and Controlled Fusion, Madison, vol. 3, p. 251. IAEA.Google Scholar
Raven, A., Rumsby, P. T., Stamper, J. A., Willi, O., Illingworth, R. & Thareja, R. 1979 App. Phys. Lett. 35, 526.CrossRefGoogle Scholar
Sleeper, A. M., Weinstock, J. & Bezzerides, B. 1973 Phys. Fluids, 16, 1508.CrossRefGoogle Scholar
Seltzer, L. & Harm, R. 1953 Phys. Rev. 89, 977.Google Scholar
Stamper, J. A., Mclean, E. A. & Ripen, B. H. 1978 Phys. Rev. Lett. 40, 1177.CrossRefGoogle Scholar
Stamper, J. A., Papadupoulos, K., Sudan, R. N., Dean, S. O., Mclean, E. A. & Dawson, J. M. 1971 Phys. Rev. Lett. 26, 1012.CrossRefGoogle Scholar
Weinstock, J. 1969 Phys. Fluids, 12, 1045.CrossRefGoogle Scholar
Wesson, J. A. & Sykes, A. 1973 Phys. Rev. Lett. 31, 449.CrossRefGoogle Scholar
Wesson, J. A., Sykes, A. & Lewis, H. R. 1973 Plasma Phys. 15, 49.CrossRefGoogle Scholar