Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T14:32:49.088Z Has data issue: false hasContentIssue false

Macroscopic electromagnetic stress tensor for ionized media

Published online by Cambridge University Press:  22 December 2009

ROBERT W. JOHNSON*
Affiliation:
Alphawave Research, Atlanta, GA 30238, USA (robjohnson@alphawaveresearch.com)

Abstract

Following the arguments presented by Mansuripur [Opt. Express, vol. 16, 2008, pp. 14821–14835], we suggest a form for the macroscopic electromagnetic stress tensor appropriate for ionized media. The generalized Lorentz force includes the effects of polarization forces as well as those on the free charge and current densities. The resulting tensor is written in terms of the fields D, B, E, and H. Its expression for a fully ionized medium subject to an external electromagnetic field is discussed, as are the plasma conservation equations. An apparatus is suggested for its experimental discrimination.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Jackson, J. D. 1998 Classical Electrodynamics. John Wiley & Sons, New York, NY, USA, 3rd edition.Google Scholar
[2]Loudon, R., Barnett, S. M. and Baxter, C. 2005 Radiation pressure and momentum transfer in dielectrics: the photon drag effect. Phys. Rev. A 71 (6), 063802.CrossRefGoogle Scholar
[3]Liu, M. and Stierstadt, K. 2000 Electromagnetic force and the Maxwell stress tensor in condensed systems. ArXiv Condensed Matter e-prints, (cond-mat/0010261).Google Scholar
[4]Engel, A. and Friedrichs, R. 2002 On the electromagnetic force on a polarizable body. Am. J. Phys. 70, 428432.CrossRefGoogle Scholar
[5]Melcher, J. R. 1981 Continuum Electromechanics. Cambridge, MA: MIT Press.Google Scholar
[6]Rosensweig, R. E. 1982 Magnetic fluids. Sci. Am. 247 (4), 136145.CrossRefGoogle Scholar
[7]Mansuripur, M. 2008 Electromagnetic stress tensor in ponderable media. Opt. Express 16 (8), 51935198.CrossRefGoogle ScholarPubMed
[8]Mansuripur, M. 2008 Electromagnetic force and torque in ponderable media. Opt. Express 16 (19), 1482114835.CrossRefGoogle ScholarPubMed
[9]Ryder, L. H. 1985 Quantum Field Theory. Cambridge University Press, Cambridge, UK.Google Scholar
[10]Davis, W. R. 1970 Classical Fields, Particles, and the Theory of Relativity. Gordon and Breach Science Publishers, New York, NY, USA.Google Scholar
[11]Nakahara, M. 1990 Geometry, Topology and Physics. IOP Publishing Ltd., Bristol, UK.CrossRefGoogle Scholar
[12]Ward, R. S. Jr., and Wells, R. O. 1991 Twistor Geometry and Field Theory. Cambridge University Press, Cambridge, UK.Google Scholar
[13]Rousseaux, G., Kofman, R. and Minazzoli, O. 2008 The Maxwell–Lodge effect: significance of electromagnetic potentials in the classical theory. Eur. Phys. J. D 49, 249256.CrossRefGoogle Scholar
[14]Griffiths, D. 1989 Introduction to Electrodynamics, 2nd edn.Englewood Cliffs, NJ: Prentice-Hall, USA.Google Scholar
[15]Mattuck, R. D. 1976 A Guide to Feynman Diagrams in the Many-Body Problem, 2nd edn.McGraw-Hill, New York, NY, USA.Google Scholar
[16]Cohen, E. R., Lide, D. R. and Trigg, G. L. (Eds) 2003 AIP Physics Desk Reference. Springer-Verlag New York, Inc., New York, NY, USA, 3rd edition.CrossRefGoogle Scholar
[17]Abraham, M. 1909 Rend. Circ. Mat. Palermo 30, 33.CrossRefGoogle Scholar
[18]Minkowski, H. 1910 Math. Ann. 68, 472.CrossRefGoogle Scholar
[19]Loudon, R. and Barnett, S. M. 2006 Theory of the radiation pressure on dielectric slabs, prisms and single surfaces. Optics Express 14, 1185511869.CrossRefGoogle ScholarPubMed
[20]Hazeltine, R. D. and Waelbroeck, F. L. 2004 The Framework of Plasma Physics. Westview Press, Boulder, CO, USA.Google Scholar
[21]Marshall, T. C. and Goldstein, L. 1961 Experimental study of the diamagnetism of gaseous plasmas with electron and nuclear spin resonance techniques. Phys. Rev. 122, 367376.CrossRefGoogle Scholar
[22]Halzen, F. and Martin, A. D. 1985 Quarks and Leptons. John Wiley & Sons, New York, NY, USA.Google Scholar
[23]Dendy, R. 1993 Plasma Physics: An Introductory Course. Cambridge University Press, Cambridge, UK.Google Scholar
[24]Stacey, W. M. 2005 Fusion Plasma Physics. Wiley-VCH, New York, NY, USA.CrossRefGoogle Scholar
[25]Fitzpatrick, R. 2008 The Physics of Plasmas. Lulu, Inc., Raleigh, NC, USA.Google Scholar
[26]Noether, E. 1918 Invariante variationsprobleme. Nachr. D. Knig. Gesellsch. D. Wiss. Zu Gttingen, Math-phys. Klasse, 235–257.Google Scholar
[27]Guyon, É., Hulin, J.-P. and Petit, L. 2001 Physical Hydrodynamics. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
[28]Woods, L. C. 2004 Physics of Plasmas. Wiley-VCH, Welnhelm, Germany.Google Scholar
[29]Braginskii, S. I. 1965 Transport processes in plasma. In: Reviews of Plasma Physics, Vol. 1 (ed. Leontovich, M. A.). New York: Consultants Bureau, NY, USA, pp. 205311.Google Scholar
[30]Johnson, R. W. 2009 Comment on ‘Plasma ionization by annularly bounded helicon waves’. Phys. Plasmas 16 (5), 054701 [Phys. Plasmas 13, 063501 (2006)].CrossRefGoogle Scholar
[31]Johnson, R. W. 2009 Stationary axial equilibrium in light of the magnetic polarization force. ArXiv Plasma Physics e-prints, (0806.4698v3).Google Scholar