Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T15:35:18.187Z Has data issue: false hasContentIssue false

Magnetosonic solitons in a dusty plasma slab

Published online by Cambridge University Press:  01 October 2008

M. MARKLUND
Affiliation:
Department of Physics, Umeå University, SE–901 87 Umeå, Sweden (mattias.marklund@physics.umu.se)
L. STENFLO
Affiliation:
Department of Physics, Umeå University, SE–901 87 Umeå, Sweden (mattias.marklund@physics.umu.se)
P. K. SHUKLA
Affiliation:
Department of Physics, Umeå University, SE–901 87 Umeå, Sweden (mattias.marklund@physics.umu.se)

Abstract

The existence of magnetosonic solitons in dusty plasmas is investigated. The nonlinear magnetohydrodynamic equations for a warm dusty magnetoplasma are thus derived. A solution of the nonlinear equations is presented. It is shown that, owing to the presence of dust, static structures are allowed. This is in sharp contrast to the formation of the so-called shocklets in usual magnetoplasmas. A comparatively small number of dust particles can thus drastically alter the behavior of the nonlinear structures in magnetized plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Sagdeev, R. Z. 1960 Reviews of Plasma Physics, Vol. 4 (ed. Leontovich, M. A.). New York: Consultant Bureau.Google Scholar
[2]Karpman, V. I. 1975 Nonlinear Waves in Dispersive Media. New York: Pergamon Press.Google Scholar
[3]Petviashvili, V. and Pokhotelov, O. 1992 Solitary Waves in Plasmas and in the Atmosphere. Philadelphia, PA: Gordon and Breach.Google Scholar
[4]Stenflo, L., Shukla, P. K. and Tsintsadze, N. L. 1994 Phys. Lett. A 191, 159.CrossRefGoogle Scholar
[5]Stenflo, L., Shvartsburg, A. B. and Weiland, J. 1997 Phys. Lett. A 225, 113.CrossRefGoogle Scholar
[6]McKenzie, J. F., Sauer, K. and Dubinin, E. 2001 J. Plasma Phys. 65, 197.CrossRefGoogle Scholar
McKenzie, J. F. and Doyle, T. B. 2002 Phys. Plasmas 9, 55.CrossRefGoogle Scholar
[7]Lembege, B. et al. 2004 Space Sci. Rev. 110, 161.CrossRefGoogle Scholar
Lobzin, V. V. et al. 2007 Geophys. Res. Lett. 34, L05107.CrossRefGoogle Scholar
[8]Shvartsburg, A. B., Stenflo, L. and Shukla, P. K. 2002 Eur. Phys. J. B 28, 71.CrossRefGoogle Scholar
[9]Shukla, P. K., Eliasson, B., Marklund, M. and Bingham, R. 2004 Phys. Plasmas 11, 2311.CrossRefGoogle Scholar
[10]Domrin, V. I. and Kropotkin, A. P. 2004 Geophys. Aeronomy 44, 163.Google Scholar
[11]Birk, G. T., Kopp, A. and Shukla, P. K. 1996 Phys. Plasmas 3, 1362.CrossRefGoogle Scholar
Shukla, P. K. 2003 Phys. Plasmas 10, 4907.CrossRefGoogle Scholar
[12]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.CrossRefGoogle Scholar
[13]Stenflo, L., Shukla, P. K. and Yu, M. Y. 2000 Phys. Plasmas 7, 2731.CrossRefGoogle Scholar
[14]Havnes, O. et al. 1992 Phys. Scr. 45, 535.CrossRefGoogle Scholar