Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T07:37:52.149Z Has data issue: false hasContentIssue false

Millimetre-wave second-harmonic generation in an underdense magnetoplasma in the presence of a magnetic wiggler

Published online by Cambridge University Press:  13 March 2009

Jetendra Parashar
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, Delhi, New Delhi 110016, India
H. D. Pandey
Affiliation:
Physics Department, Barkatullah University, Bhopal 462028, India
K. Ramachandran
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, Delhi, New Delhi 110016, India
R. K. Singh
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, Delhi, New Delhi 110016, India

Extract

A high-power millimetre wave (w1, k1) propagating through a magnetized plasma in the presence of a wiggler magnetic field (0, k0) produces density perturbations at (w1, K1 +K0). The density perturbations couple with the oscillatory velocity at (wl, K1) to produce a nonlinear current at (2w1, 2K1 +K0) driving second-harmonic electromagnetic radiation. The amplitude of the generated wave is sensitive to cyclotron resonance.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carmel, Y., Minami, K., Kehs, R. A., Destler, W. W., Granatstein, V. L., Abe, P. & Lou, W. L. 1989 Phys. Rev. Lett. 62, 2389.CrossRefGoogle Scholar
Carmel, Y., Minami, K., Lou, W., Khes, R. A., Destler, W. W., Granatstein, V. L., Abe, D. K. & Rodgers, J. 1990 IEEE Trans. Plasma Sci. 18, 497.CrossRefGoogle Scholar
Davidson, R. C. & McMullin, W. A. 1983 Phys. Fluids 26, 840.CrossRefGoogle Scholar
Grebogi, C., Tripathi, V. K. & Chen, H. H. 1983 Phys. Fluids 26, 1904.CrossRefGoogle Scholar
Kurilko, V. I., Kucherov, V. I. & Ostrovskii, A. O. 1982 Soviet Phys. Tech. Phys. 26, 812.Google Scholar
L'Huillier, A. & Balcou, P. 1993 Phys. Rev. Lett. 70, 74.Google Scholar
Lin, A. T. & Chen, L. 1989 Phys. Rev. Lett. 63, 2808.CrossRefGoogle Scholar
Marshall, T. C. 1985 Free Electron Lasers, pp. 818. Macmillan.Google Scholar
Minami, K., Carmel, Y., Granatstein, V. L., Destler, W. W., Lou, W., Abe, D. K., Hosakawa, T., Ogura, K. & Watanabe, T. 1990 IEEE Trans. Plasma Sci. 18, 537.CrossRefGoogle Scholar
Mishra, G. & Tripathi, V. K. 1989 IEEE Trans. Plasma Sci. 17, 12.CrossRefGoogle Scholar
Nusinovich, G. S. 1992a Int. J. Electron. 72, 795.CrossRefGoogle Scholar
Nusinovich, G. S. 1992b Int. J. Electron. 72, 959.CrossRefGoogle Scholar
Parshar, J. & Pandey, H. D. 1992 IEEE Trans. Plasma Sci. 20, 996.CrossRefGoogle Scholar
Roberson, C. W. & Sprangle, P. 1989 Phys. Fluids B 1, 3.CrossRefGoogle Scholar
Singh, A., Destler, W. W., Granatstein, V. L. & Hix, W. R. 1992 Int. J. Electron. 72, 827.CrossRefGoogle Scholar
Schmitt, M. J. & Elliot, C. J. 1986 Phys. Rev. A 34, 4843.CrossRefGoogle Scholar
Tripathi, V. K. & Liu, C. S. 1989 IEEE Trans. Plasma Sci. 17, 583.CrossRefGoogle Scholar
Tripathi, V. K. & Liu, C. S. 1990 IEEE Trans. Plasma Sci. 18, 466.CrossRefGoogle Scholar