Published online by Cambridge University Press: 20 August 2020
Finding coil sets with desirable physics and engineering properties is a crucial step in the design of modern stellarator devices. Existing stellarator coil optimization codes ultimately produce zero-thickness filament coils. However, stellarator coils have finite depth and thickness, which can make the single-filament model a poor approximation, particularly when coil build dimensions are relatively large compared to the coil–plasma distance. In this paper, we present a new method for designing coils with finite builds and present a mechanism to optimize the orientation of the winding pack. We approximate finite-build coils with a multi-filament model. A numerical implementation has been developed, and applications to the Helically Symmetric eXperiment stellarator and a new UW-Madison quasihelically symmetric configuration are shown.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.