Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T14:40:08.327Z Has data issue: false hasContentIssue false

Oscillation-centre fluid theory of the ponderomotive force

Published online by Cambridge University Press:  13 March 2009

G. W. Kentwell
Affiliation:
Department of Theoretical Physics, Research School of Physical Sciences, Australian National University, Canberra, ACT, 2601, Australia
D. A. Jones
Affiliation:
Materials Research Laboratories, P.O. Box 50, Ascot Vale, Victoria, 3032, Australia

Abstract

A new fluid-theory derivation of the time-dependent ponderomotive force is presented in the oscillation-centre representation. We show that the velocity renormalization adopted in this paper is equivalent to the oscillation-centre representation and is the velocity required so that the mean density obeys the continuity equation exactly. We also show that previous fluid theory results may be recovered by adopting a different velocity renormalization and by redefining the ponderomotive force.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, D. G. & McIntyre, M. E. 1978 a J. Fluid Mech. 89, 609.CrossRefGoogle Scholar
Andrews, D. G. & McIntybe, M. E. 1978 b J. Fluid Mech. 89, 647.CrossRefGoogle Scholar
Barash, Yu. S. & Karpman, V. I. 1984 Soviet Phys. JETP. (To be published.)Google Scholar
Bretherton, F. P. 1971 Lectures in Applied Mathematics, vol. 13, p. 61. American Mathematical Society.Google Scholar
Cary, J. R. & Kaufman, A. N. 1981 Phys. Fluids, 24, 1238.CrossRefGoogle Scholar
Dewar, R. L. 1970 Phys. Fluids, 13, 2710.CrossRefGoogle Scholar
Dewar, R. L. 1977 Aust. J. Phys. 35, 533.CrossRefGoogle Scholar
Dougherty, J. P. 1970 J. Plasma Phys. 4, 761.CrossRefGoogle Scholar
Grimshaw, R. 1975 J. Fluid Mech. 71, 497.CrossRefGoogle Scholar
Jones, D. A. & Kentwell, G. W. 1984 Plasma Phys. Contr. Fusion, 26, 955.CrossRefGoogle Scholar
Karpman, V. I. & Shagalov, A. G. 1982 J. Plasma. Phys. 27, 215.CrossRefGoogle Scholar
Kentwell, G. W. & Jones, D. A. 1985 Phys. Reports (to appear).Google Scholar
Kranys, M. 1982 Int. J. Engng. Sci. 20, 1193.CrossRefGoogle Scholar
Ovendum, C. R., Statham, G. & Ter Haar, D. 1983 Plasma Phys. 25, 665.CrossRefGoogle Scholar
Speziale, T. & Catto, P. J. 1978 Phys. Fluids, 21, 2063.CrossRefGoogle Scholar
Statham, G. & Ter Haar, D. 1983 Plasma Phys. 25, 681.CrossRefGoogle Scholar
Sturrock, P. A. 1958 Ann. Phys. 4, 306.CrossRefGoogle Scholar
Tskhakaya, D. D. 1981 J. Plasma Phys. 25, 233.CrossRefGoogle Scholar
Vuković, S. 1984 Laser and Particle Beams, 2, 293.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Washimi, H. & Karpman, V. I. 1976 Soviet Phys. JETP, 44, 528.Google Scholar