Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T23:17:14.008Z Has data issue: false hasContentIssue false

Plasma diagnostics for complex plasmas under microgravity and on ground

Published online by Cambridge University Press:  10 February 2012

MIKHAIL Y. PUSTYLNIK
Affiliation:
Max-Plank-Institute for Extraterrestrial Physics, P.O. Box 1312, 85741 Garching, Germany (pustylnik@mpe.mpg.de)
MARKUS H. THOMA
Affiliation:
Max-Plank-Institute for Extraterrestrial Physics, P.O. Box 1312, 85741 Garching, Germany (pustylnik@mpe.mpg.de)
GREGOR E. MORFIŁL
Affiliation:
Max-Plank-Institute for Extraterrestrial Physics, P.O. Box 1312, 85741 Garching, Germany (pustylnik@mpe.mpg.de)
RAINER GRIMM
Affiliation:
Berner & Mattner Systemtechnik GmbH, Erwin-von-Kreibig-Str. 3, 80807 München, Germany
CHRISTIAN HOCK
Affiliation:
Berner & Mattner Systemtechnik GmbH, Erwin-von-Kreibig-Str. 3, 80807 München, Germany

Abstract

Complex plasmas are low-temperature plasmas containing micron-sized particles (microparticles) such as dust grains. These are present in astrophysical systems (comets, molecular clouds, et al.) and in technological applications (microchip production by plasma etching, deposition of solar cells, et al.). Complex plasmas are also of interest in basic science because these are often used as models for many other strongly coupled many-body systems in solid state, fluid, or plasma physics. Since gravity has a strong influence on the microparticle component, experiments under microgravity (parabolic flights, sounding rockets, International Space Station (ISS)) are performed. Interaction between microparticles depends on plasma parameters such as ion density or ion temperature. Also, the presence of microparticles may change the properties of background plasma. Therefore, the background plasma needs to be characterized to provide adequate interpretation of the microgravity experiments. For this purpose a dedicated high-speed diagnostic system has been set up.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Do, H. T., Kersten, H. and Hippler, R. 2008 Interaction of injected dust particles with metastable neon atoms in a radio frequency plasma. New J. Phys. 10 (1–14), 053010.CrossRefGoogle Scholar
Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421, 1103.Google Scholar
Fortov, V., Morfill, G., Petrov, O., Thoma, M., Usachev, A., Hoefner, H., Zobnin, A., Kretschmer, M., Ratynskaia, S. et al. 2005 The project ‘Plasmakristall-4’ (PK-4) – a new stage in investigations of dusty plasmas under microgravity conditions: first results and future plans. Plasma Phys. Control Fusion 47, B537B549.Google Scholar
Fortov, V. E., Nefedov, A. P., Vaulina, O. S., Lipaev, A. M., Molotkov, V. I., Samaryan, A. A., Nikitski, V. P., Ivanov, A. I., Savin, S. F. et al. 1998 Dusty plasmas induced by solar radiation under microgravitational conditions: an experiment on board the Mir orbiting space station. JETP 87, 10871097.Google Scholar
Hübner, S. and Melzer, A. 2009 Dust-induced modulation of the atomic emission in a dusty argon discharge. Phys. Rev. Lett. 102 (1–4), 215001.CrossRefGoogle Scholar
Ikezi, H. 1986 Coulomb solids of small particles in plasmas. Phys. Fluids 29, 17641766.CrossRefGoogle Scholar
Klindworth, M., Arp, O. and Piel, A. 2007 Langmuir probe system for dusty plasmas under microgravity. Rev. Sci. Instr. 78 (1–7), 033502.CrossRefGoogle ScholarPubMed
Kompaneets, R., Konopka, U., Ivlev, A. V., Tsytovich, V. and Morfill, G. 2007 Potential around a charged dust particle in a collisional sheath. Phys. Plasmas 14 (1–7), 052108.Google Scholar
Kong, M. G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., van Dijk, J. and Zimmermann, J. L. 2009 Plasma Medicine: an introductory review. New J. Phys. 11 (1–35), 115012.Google Scholar
Konopka, U., Morfill, G. E. and Ratke, L. 2000 Measurement of the interaction potential of microspheres in the sheath of a rf discharge. Phys. Rev. Lett. 84, 891894.Google Scholar
Liu, B., Goree, J., Fortov, V. E., Lipaev, A. M., Molotkov, V. I., Petrov, O. F., Morfill, G. E., Thomas, H. M. and Ivlev, A. V. 2010 Dusty plasma diagnostics methods for charge, electron temperature, and ion density. Phys. Plasmas 17 (1–8), 053701.CrossRefGoogle Scholar
Mikikian, M., Boufendi, L., Bouchoule, A., Thomas, H. M., Morfill, G. E., Nefedov, A. P., Fortov, V. E. and the PKE-Nefedov team 2003 Formation and behaviour of dust particle clouds in a radio-frequency discharge: results in the laboratory and under microgravity conditions. New J. Phys. 5, 19.1–19.12.Google Scholar
Mitic, S., Pustylnik, M. Y. and Morfill, G. E. 2009 Spectroscopic evaluation of the effect of the microparticles on radiofrequency argon plasma. New J. Phys. 11 (1–16), 083020.CrossRefGoogle Scholar
Morfill, G. E. and Ivlev, A. V. 2009 Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 13531404.CrossRefGoogle Scholar
Nefedov, A. P., Morfill, G. E., Fortov, V. E., Thomas, H. M., Rothermel, H., Hagl, T., Ivlev, A. V., Zuzic, M., Klumov, B. A. et al. 2003 PKE-Nefedov: plasma crystal experiments on the international space station. New J. Phys. 5, 33.1–33.10.CrossRefGoogle Scholar
Nefedov, A. P., Vaulina, O. S., Petrov, O. F., Molotkov, V. I., Torchinski, V. M., Fortov, V. E., Chernyshev, A. V., Lipaev, A. M., Ivanov, A. I. et al. 2002 The dynamics of macroparticles in a direct current glow discharge plasma under microgravitation conditions. JETP 95, 673681.CrossRefGoogle Scholar
Nosenko, V., Ivlev, A. V., Zhdanov, S. K., Fink, M. and Morfill, G. E. 2009 Rotating electric fields in complex (dusty) plasmas. Phys. Plasmas 16 (1–9), 083708.CrossRefGoogle Scholar
Nunomura, S., Misawa, S., Ohno, N. and Takamura, S. 1999 Instability of dust particles in a Coulomb crystal due to delayed charging. Phys. Rev. Lett. 83, 19701973.CrossRefGoogle Scholar
Pustylnik, M. Y., Ivlev, A. V., Thomas, H. M. et al. 2009 Effect of high-voltage nanosecond pulses on complex plasmas. Phys. Plasmas 16 (1–5), 113705.CrossRefGoogle Scholar
Pustylnik, M. Y., Ohno, N., Takamura, S. and Smirnov, R. 2006 Modification of the damping rate of a dust particle levitating in a plasma due to the delayed charging effect. Phys. Rev. E 74 (1–9), 046402.Google Scholar
Rothermel, H., Hagl, T., Morfill, G. E., Thoma, M. H. and Thomas, H. M. 2002 Gravity compensation in complex plasmas by application of a temperature gradient. Phys. Rev. Lett. 89 (1–4), 175001.Google Scholar
Samsonov, D. and Goree, J. 1999a Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59, 10471058.Google Scholar
Samsonov, D. and Goree, J. 1999b Line ratio imaging of a gas discharge. IEEE Trans. Plasma Sci. 27, 7677.Google Scholar
Thoma, M. H., Fink, M. A., Höfner, H., Kretschmer, M., Khrapak, S. A., Ratynskaia, S. V., Yaroshenko, V. V., Morfill, G. E., Petrov, O. F. et al. 2007 PK-4: complex plasmas in space – the next generation. IEEE Trans. Plasma Sci. 35, 255259.Google Scholar
Thomas, H. M., Morfill, G. E., Demmel, V. et al. 1994 Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73, 652655.Google Scholar
Thomas, H. M., Morfill, G. E., Fortov, V. E. et al. 2008 Complex plasma laboratory PK-3 Plus on the international space station. New J. Phys. 10 (1–14), 033036.CrossRefGoogle Scholar
Zobnin, A. V. 2009 A nonlocal model of spatially nonuniform positive column of DC discharge. High Temp. 47, 769776.CrossRefGoogle Scholar