Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T23:02:38.807Z Has data issue: false hasContentIssue false

Plasma maser theory of the extraordinary mode in the presence of Langmuir turbulence

Published online by Cambridge University Press:  13 March 2009

S. N. Sarma
Affiliation:
M. C. College, Barpeta 781 301, Assam, India
K. K. Sarma
Affiliation:
M. C. College, Barpeta 781 301, Assam, India
M. Nambu
Affiliation:
College of General Education, Kyushu University, Ropponmatsu, Fukuoka 810, Japan

Abstract

The emission of extraordinary mode radiation in a plasma with Langmuir turbulence driven by an electron beam is considered. The process of emission considered in this paper is the plasma maser effect, which is essentially an energy up-conversion process. The energy necessary for the growth of the extraordinary mode is derived from the Langmuir turbulence. The nonlinear dispersion relation of the extraordinary mode in the presence of Langmuir turbulence is obtained and its growth rate calculated. The scope of application of the results to space-plasma observation is then stressed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fujiyama, H. & Nambu, M. 1984 Phya. Leti. 105 A, 295.CrossRefGoogle Scholar
Gurnett, D. A. 1974 J. Geophys. Res. 79, 4227.CrossRefGoogle Scholar
Isakov, S. B., Krivitsky, V. S. & Tsytovich, V. N. 1986 Soviet Phys. JETP 63, 545.Google Scholar
Kaiser, M. L., Desch, M. D., Warwick, J. W. & Pearce, J. B. 1980 Science 209, 1238.CrossRefGoogle Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics, p. 409. McGraw-Hill.Google Scholar
Krivitsky, V. S. 1990a Soviet Phys. JETP 71, 722.Google Scholar
Krivitsky, V. S. 1990b Soviet Phys. JETP 71, 888.Google Scholar
Krivitsky, V. S. & Tsytovich, V. N. 1990 Contrib. Plasma Phys. 30, 339.Google Scholar
Krivitsky, V. S. & Vladimirov, S. V. 1990 Phys. Lett. 143 A, 329.CrossRefGoogle Scholar
Kuijpers, J. & Melrose, D. B. 1985 Astrophys. J. 294, 28.Google Scholar
Leblanc, Y., Aubier, M. G., Ortega-Molina, A. & Lecacheux, A. 1987 J. Geophys. Res. 92, 15125.CrossRefGoogle Scholar
Leblanc, Y. & Daigne, G. 1985 J. Geophys. Res. 90, 12073.Google Scholar
Mori, I. & Ohya, K. 1987 Phys. Rev. Lett. 59, 1825.CrossRefGoogle Scholar
Nambu, M. 1983 Laser Particle Beams 1, 427.CrossRefGoogle Scholar
Nambu, M. 1986 Space Sci. Rev. 44, 357.Google Scholar
Nambu, M., Bujarbarua, S. & Sarma, S. N. 1987 Phys. Rev. A 35, 798.CrossRefGoogle Scholar
Nambu, M., Hada, T., Sarma, S. N. & Bujarbarua, S. 1991 J. Phys. Soc. Japan 60, 3004.Google Scholar
Nambu, M., Sarma, S. N. & Bujarbarua, S. 1990 Phys. Fluids B 2, 302.CrossRefGoogle Scholar
Nicolis, G. & Prigogine, I. 1977 Self-Organization in Nonequilibrium Systems. Wiley.Google Scholar
Pottelette, R., Malingre, M., Bahnsen, A. & Jespersen, M. 1987 Geophys. Res. Lett. 14, 515.CrossRefGoogle Scholar
Scudder, J. D., Sittler, E. C. & Bridge, A. 1981 J. Geophys. Res. 86, 8157.Google Scholar
Sudan, R. N. 1984 Handbook of Plasma Physics (ed. Galeev, A. A. & Sudan, R. N.), vol. 2, p. 337. Elsevier.Google Scholar
Tsytovich, V. N., Stenflo, L. & Wilhelmsson, H. 1975 Physica Scripta 11, 251.Google Scholar
Vladimirov, S. V. & Krivitsky, V. S. 1990 Soviet J. Plasma Phys. 16, 345.Google Scholar
Warwick, J. W., Pearce, J. B., Evans, D. R., Carr, T. D., Schauble, J. J., Alexander, J. K., Kaiser, M. L., Desch, M. D., Pedersen, M., Lecacheux, A., Daigne, G., Boischot, A. & Barrow, C. H. 1981 Science 212, 239.Google Scholar