Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T14:07:36.776Z Has data issue: false hasContentIssue false

Relativistic effects on the collisionless–collisional transition of the filamentation instability in fast ignition

Published online by Cambridge University Press:  20 August 2010

M. FIORE
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, 1049-001 Lisboa, Portugal (luis.silva@ist.utl.pt)
F. FIÚZA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, 1049-001 Lisboa, Portugal (luis.silva@ist.utl.pt)
M. MARTI
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, 1049-001 Lisboa, Portugal (luis.silva@ist.utl.pt)
R. A. FONSECA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, 1049-001 Lisboa, Portugal (luis.silva@ist.utl.pt)
L. O. SILVA
Affiliation:
GoLP/Instituto de Plasmas e Fusão Nuclear – Laboratório Associado, Instituto Superior Técnico, 1049-001 Lisboa, Portugal (luis.silva@ist.utl.pt)

Abstract

Relativistic collisional effects on the filamentation instability are analytically and numerically investigated by comparing collisionless and collisional scenarios for a fast ignition (FI) configuration. The theoretical kinetic model, including warm species and space charge effects, predicts the preferential formation of larger filaments and the inhibition/enhancement of the instability when collisions are accounted for. These collisional effects are qualitatively and quantitatively confirmed by 1D and 2D particle-in-cell (PIC) simulations, also providing a physical picture for the inhibition/enhancement regime due to collisions, based on the electron beam slowdown. By plugging typical FI parameters in the dispersion relation, the theoretical model predicts significant growth rates of the instability deep inside the FI target, thus showing the potential role of the filamentation instability as a mechanism for energy deposition into the pellet core.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Tabak, M. et al. 1994 Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
[2]Kodama, R. et al. 2002 Nature 412, 798; (2002) 418, 933.CrossRefGoogle Scholar
[3]Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
[4]Medvedev, M. V. and Loeb, A. 1999 Astrophys. J. 526, 697; Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori, W. B. and Medvedev, M. V. 2003 ibid. 596, L121; Frederiksen, J. T., Hededal, C. B., Haugbølle, T. and Nordlund, Å. 2004 ibid. 608, L13; Medvedev, M. V., Fiore, M., Fonseca, R. A., Silva, L. O. and Mori, W. B. 2005 ibid. 618, L75.CrossRefGoogle Scholar
[5]Ren, C., Tzoufras, M., Tsung, F. S., Mori, W. B., Amorini, S., Fonseca, R. A., Silva, L. O., Adam, J. C. and Heron, A. 2004 Phys. Rev. Lett. 93, 185004.CrossRefGoogle Scholar
[6]Yang, T.-Y. B., Arons, J. and Langdon, A. B. 2004 Phys. Plasmas 1, 3059.CrossRefGoogle Scholar
[7]Wallace, J. M., Brackbill, J. U., Cranfill, C. W., Forslund, D. W. and Mason, R. J. 1987 Phys. Fluids 30, 1085.CrossRefGoogle Scholar
[8]Molvig, K. 1975 Phys. Rev. Lett. 35, 1504.CrossRefGoogle Scholar
[9]Honda, M. 2004 Phys. Rev. E 69, 016401.Google Scholar
[10]Deutsch, C., Bret, A., Firpo, M.-C. and Fromy, P. 2005 Phys. Rev. E 72, 026402; Gremillet, L., Bonnaud, G. and Aminaroff, F. 2002 Phys. Plasmas 9, 941; Epperlein, E. M. 1985 Plasma Phys. Contr. F. 27, 1027.Google Scholar
[11]Hao, B., Sheng, Z.-M. and Zhang, J. 2008 Phys. Plasmas 15, 082112.CrossRefGoogle Scholar
[12]Hao, B., Sheng, Z.-M., Ren, C. and Zhang, J. 2009 Phys. Rev. E 79, 046409.Google Scholar
[13]Bhatnagar, P. L., Gross, E. P. and Krook, M. 1954 Phys. Rev. 94, 511.CrossRefGoogle Scholar
[14]Tzoufras, M., Ren, C., Tsung, F. S., Tonge, J. W., Mori, W. B., Fiore, M., Fonseca, R. A. and Silva, L. O. 2006 Phys. Rev. Lett. 96, 105002.CrossRefGoogle Scholar
[15]Fiore, M., Silva, L. O., Ren, C., Tzoufras, M. A. and Mori, W. B. 2006 Mon. Not. R. Astron. Soc. 372, 1851.CrossRefGoogle Scholar
[16]Davies, J. R., Bell, A. R., Haines, M. G. and Guérin, S. M. 1997 Phys. Rev. E 56, 7193.CrossRefGoogle Scholar
[17]Fiore, M. 2008 Ph.D. thesis, IST.Google Scholar
[18]Delcroix, J.-L. and Bers, A. 1994 In: Physique des Plasmas, Vol. 2 (InterÉditions/CNRS Éditions). Paris, p. 182.Google Scholar
[19]Opher, M., Morales, G. J. and Leboeuf, J. N. 2002 Phys. Rev. E 66, 016407.Google Scholar
[20]Cottrill, L. A., Langdon, A. B., Lasinski, B. F., Lund, S. M., Molvig, K., Tabak, M., Town, R. P. J. and Williams, E. A. 2008 Phys. Plasmas 15, 082108.CrossRefGoogle Scholar
[21]Silva, L. O., Fonseca, R. A., Tonge, J. W., Mori, W. B. and Dawson, J. M. 2002 Phys. Plasmas 9, 2458.CrossRefGoogle Scholar
[22]Sentoku, Y., Mima, K., Kojima, S. and Ruhl, H. 2000 Phys. Plasmas 7, 689.CrossRefGoogle Scholar
[23]Fonseca, R. A., Silva, L. O., Hemker, R. G., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S., Katsouleas, T. and Adams, J. C. 2002 Lecture Notes Comput. Sci. 2331, 342.CrossRefGoogle Scholar
[24]Peano, F., Marti, M., Silva, L. O. and Coppa, G. 2009 Phys. Rev. E 79, 025701(R).Google Scholar
[25]Takizuka, T. and Abe, H. 1977 J. Comput. Phys. 25, 205.CrossRefGoogle Scholar
[26]Hockney, R. W. and Eastwood, J. W. 1988 Computer Simulation Using Particles. Bristol: Institute of Physics Publishing, p. 318.CrossRefGoogle Scholar
[27]Kaw, P. and Dawson, J. 1970 Phys. Fluids 13, 472.CrossRefGoogle Scholar
[28]Wilks, S. C., Kruer, W. L., Tabak, M. and Langdon, A. B. 1992 Phys. Rev. Lett. 69, 1383.CrossRefGoogle Scholar
[29]Dunne, M. 2006 Nature Phys. 2, 2.CrossRefGoogle Scholar
[30]The HiPER project – Technical Background and Conceptual Design Report, from http://www.hiper-laser.org/docs/tdr/HiPERTDR2.pdf.Google Scholar
[31]Ren, C. and Betti, R. Data courtesy, 2006.Google Scholar