Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T02:36:15.170Z Has data issue: false hasContentIssue false

The structure of reconnection layers

Published online by Cambridge University Press:  13 March 2009

Martin F. Heyn
Affiliation:
Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften, A-8010 Graz, Austria
Helfried K. Biernat
Affiliation:
Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften, A-8010 Graz, Austria
Richard P. Rijnbeek
Affiliation:
Institut für Weltraumforschung, Österreichische Akademie der Wissenschaften, A-8010 Graz, Austria
Vladimir S. Semenov
Affiliation:
Institute of Physics, State University, Leningrad, 198904, USSR

Abstract

Using nonlinear ideal MHD equations, we analyse the structure of the convection region within a Petschek-type model for reconnection. We show how, assuming that the normal field and flow components remain small and using simple wave analysis, the structure of the reconnection layer as well as the behaviour of the tangential field and plasma parameters can be specified in terms of the external parameters in the inflow regions. Equations for the normal field and flow components and the angular width of the reconnection layer (assuming planar symmetry and a steady state) are also given in terms of the value of the electric field along the reconnection line. The model is suited to application at the earth's magnetopause and in the distant magnetotail. In particular, it lends itself to an investigation of the requirements for reconnection to occur and the general validity of MHD reconnection models in practical applications.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1975 Plasma Electrodynamics, vol. 1. Pergamon.Google Scholar
Barnes, A. 1983 Solar-Terrestrial Physics (ed. Carovillano, R. L. & Forbes, J. M.), pp. 155172. Reidel.CrossRefGoogle Scholar
Barnes, A. & Hollweg, V. 1974 J. Geophys. Res. 79, 2302.CrossRefGoogle Scholar
Biernat, H. K., Heyn, M. F. & Semenov, V. S. 1986 Adv. Space Res. 6, 119.CrossRefGoogle Scholar
Biernat, H. K., Heyn, M. F. & Semenov, V. S. 1987 J. Geophys. Res. 92, 3392.CrossRefGoogle Scholar
Cowley, S. W. H. 1984 Magnetic Reconnection in Space and Laboratory Plasmas (ed. Hones, E. W.), pp. 375378. AGU, Washington.CrossRefGoogle Scholar
Cowley, S. W. H. 1985 Solar System Magnetic Fields (ed. Priest, E. R.), pp. 121155. Reidel.CrossRefGoogle Scholar
Dungey, J. W. 1978 J. Atmos. Terr. Phys. 40, 231.CrossRefGoogle Scholar
Gogosov, V. V. 1961 J. Appl. Math. Mech. 25, 148.CrossRefGoogle Scholar
Heyn, M. F., Biernat, H. K., Semenov, V. S. & Kubyshkin, I. V. 1985 J. Geophys. Res. 90, 1781.CrossRefGoogle Scholar
Heyn, M. F., Biernat, H. K. & Semenov, V. S. 1986 Adv. Space Res. 6, 115.CrossRefGoogle Scholar
Hudson, P. D. 1970 Planet. Space Sci. 18, 1611.CrossRefGoogle Scholar
Jeffrey, A. & Taniuti, T. 1964 Non-Linear Wave Propagation. Academic Press.Google Scholar
Levy, R. H., Petschek, H. E. & Siscoe, G. L. 1964 AIAA J. 2, 2065.CrossRefGoogle Scholar
Neubauer, F. M. 1976 J. Geophys. Res. 81, 2248.CrossRefGoogle Scholar
Parker, E. N. 1957 J. Geophys. Res. 62, 509.CrossRefGoogle Scholar
Parker, E. N. 1963 Astrophys. J. Suppl. 8, 177.CrossRefGoogle Scholar
Petschek, H. E. 1964 NASA Spec. Publ. SP-50, pp. 425–439.Google Scholar
Petschek, H. E. & Thorne, R. M. 1967 Astrophys. J. 147, 1157.CrossRefGoogle Scholar
Priest, E. R. 1985 Rep. Prog. Phys. 48, 955.CrossRefGoogle Scholar
Pudovkin, M. I. & Semenov, V. S. 1985 Space Sci. Rev. 41, 1.CrossRefGoogle Scholar
Semenov, V. S., Kubyshkin, I. V., Heyn, M. F. & Biernat, H. K. 1983 J. Plasma Phys. 30, 321.CrossRefGoogle Scholar
Sonnerup, B. U. Ö. 1979 Solar System Plasma Physics, vol. 3 (ed. Lanzerotti, L. J., Kennel, C. F. & Parker, E. N.), pp. 45108. North-Holland.Google Scholar
Sonnerup, B. U. Ö., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T. & Russell, C. T. 1981 J. Geophys. Res. 86, 10049.CrossRefGoogle Scholar
Sweet, P. A. 1958 Electromagnetic Phenomena in Cosmical Physics (ed. Lehnert, B.), pp. 123134. Cambridge University Press.Google Scholar
Vasyliunas, V. M. 1975 Rev. Geophys. Space Phys. 13, 303.CrossRefGoogle Scholar
Weitzner, H. 1983 Handbook of Plasma Physics, vol. 1 (ed. Galeev, A. A. & Sudan, R. N.), p. 201. North-Holland.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.Google Scholar