Published online by Cambridge University Press: 01 August 1999
Application of lower-hybrid (LH) power in short, intense pulses in the 5–10 GW range should overcome the limiting effects of Landau damping, and thereby permit the penetration of LH power into the interior of large-scale plasmas. We show that, under such very intense LH pulses, wave coupling may deteriorate because of nonlinear density changes due to the ponderomotive force effects in front of the grill. Ponderomotive forces are also likely to induce strong plasma bias and consequent poloidal and toroidal plasma rotation. Although backward electric currents, created in the plasma by intense LH pulses, dissipate a large portion of the radio frequency power absorbed, the current drive efficiency is acceptable. We use a numerical simulation of wave–particle interactions to analyse the applicability of standard quasilinear theory to the case of large energy flux densities. The initial results indicate the existence of important restrictions on the use of the quasilinear approximation. The results of the present paper also indicate that some of the effects considerably alter some ideas of Cohen et al.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.