Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T21:14:01.385Z Has data issue: false hasContentIssue false

Weakly relativistic dielectric tensor in the presence of temperature anisotropy

Published online by Cambridge University Press:  13 March 2009

M. Bornatici
Affiliation:
Dipartimento di Fisicadell'Università di Ferrara, 44100 Ferrara, Italy
G. Chiozzi
Affiliation:
Dipartimento di Fisicadell'Università di Ferrara, 44100 Ferrara, Italy
P. de Chiara
Affiliation:
Dipartimento di Fisicadell'Università di Ferrara, 44100 Ferrara, Italy

Abstract

Analytical expressions for the weakly relativistic dielectric tensor near the electron-cyclotron frequency and harmonies are obtained to any order in finite-Larmor-radius effects for a bi-Maxwellian distribution function. The dielectric tensor is written in ternis of generalized Shkarofsky dispersion functions, whose properties are well known. Relevant limiting cases are considered and, in particular, the anti-Hermitian part of the (fully relativistic) dielectric tensor is evaluated for two cases of strong temperature anisotropy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bekefi, G. 1966 Radiation Processes in Plasmas. Wiley.Google Scholar
Bornatici, M., Cano, R., Debarbieri, O. & Engelmann, F. 1983 a Nucl. Fusion, 23, 1153.CrossRefGoogle Scholar
Bornatici, M., Crestani, M., Ferri, P. & Ruffina, U. 1983 b Proceedings of 11th European Conference on Controlled Fusion and Plasma Physics, Aachen, Part I. p. 393.Google Scholar
Bornatici, M. & Ruffina, U. 1985 Nuovo Cim. 6D, 231.CrossRefGoogle Scholar
Dawson, J. M. 1981 Fusion, vol. 1, part B (ed. Teller, E.), p. 453. Academie.CrossRefGoogle Scholar
Dnevstrovskij, Y. N., Kostomarov, D. P. & Shrydlov, N. V. 1964 Soviet Phys. Tech. Phys. 8, 691.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1980 Table of Integrals, Series, and Products. Academie.Google Scholar
Krivenski, V. & Orefice, A. 1983 J. Plasma Phys. 30, 125.CrossRefGoogle Scholar
Lam, N. T., Sharer, J. E. & Audenaerde, K. 1984 Electron cyclotron resonance heating in tandem mirror plug and barrier regions. University of Wisconsin-Madison International Report ECE-84–12.Google Scholar
Lazzaro, E. & Orefice, A. 1980 Phys. Fluids, 11, 2330.CrossRefGoogle Scholar
Maroli, C. & Petrillo, V. 1981 Physica Scripta 24, 955.CrossRefGoogle Scholar
Melrose, D. B. 1980 Plasma Astrophysics, chap. 12. Gordon & Breach.Google Scholar
Robinson, P. A. 1986 J. Math. Phys. 27, 1206.CrossRefGoogle Scholar
Robinson, P. A. 1987 J. Math. Phys. 28, 1203.CrossRefGoogle Scholar
Shkarofsky, I. P. 1966 Phys. Fluids, 9, 561.CrossRefGoogle Scholar
Shkarofsky, I. P. 1986 J. Plasma Phys. 35, 319.CrossRefGoogle Scholar
Tsai, S. T., Wu, C. S., Wang, Y. D. & Kang, S. W. 1981 Phys. Fluids, 24, 2186.CrossRefGoogle Scholar
Tsang, K. 1984 Phys. Fluids, 27, 1659.CrossRefGoogle Scholar
Ziebell, L. F. 1988 J. Plasma Phys. 39, 431.CrossRefGoogle Scholar