Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T09:22:57.775Z Has data issue: false hasContentIssue false

Analysis of plasma critical flow in ablative discharge capillaries with a non-constant cross-section

Published online by Cambridge University Press:  13 March 2009

J. Ashkenazy
Affiliation:
SOREQ NRC, Yavne 81800, Israel
D. Zoler
Affiliation:
Tel-Aviv University, Tel Aviv 69978, Israel

Abstract

A quasi-one-dimensional model for the steady-state flow of a plasma in an ablative discharge capillary is presented for capillaries with non-constant cross- section. It is demonstrated that small modifications of the capillary geometry can lead to significant changes in the plasma exit parameters. In this respect, the possibility of obtaining an extended range of plasma parameters makes this type of ablative capillary a useful source of plasma for a variety of applications. Numerical solution of the equations of the model for the critical-flow case allows evaluation of the main fluid-dynamic and thermodynamic parameters of the plasma inside the capillary and at its exit.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashkenazy, J., Kipper, R. & Caner, M. 1991 Phys. Rev. A 43, 5568.CrossRefGoogle Scholar
Burton, R. L., Hilko, B. K., Witherspoon, F. D. & Jaafari, O. 1991 IEEE Trans. Plasma Sci. 19, 340.CrossRefGoogle Scholar
Claessens, M. & Thiel, H. G. 1993 Proceedings of 1CPIG XXI, Vol. 2, p. 44.Google Scholar
Cuperman, S., Zoler, D., Ashkenazy, J., Caner, M. & Kaplan, Z. 1993 IEEE Trans. Plasma Sci. 21, 282.CrossRefGoogle Scholar
Fang, M. T. C. & Bu, W. H. 1991 Proc.IEEA 138, 71.Google Scholar
Hermann, W., Kogelshatz, U., Ragaller, K. & Schade, E. 1974 J. Phys. D: Appl. Phys. 7, 607.CrossRefGoogle Scholar
Hollan, K. S. (ed.) 1984 T-4 Handbook of Material Properties Data Bases, Vol. IIc. Equations of State, Los Alamos National Laboratory 875449 (LA-10160-MS).Google Scholar
Kovitya, P. & Lowke, J. J. 1984 J. Phys. D: Appl. Phys. 17, 1197.CrossRefGoogle Scholar
Lee, C. C. 1984 A comparison of innovative technology for thermal destruction of hazardous waste. Report EPA-600/D-84-057, Industrial Environmental Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio.Google Scholar
Loeb, A. & Kaplan, Z. 1989 IEEE Trans. Magn. 25, 342.CrossRefGoogle Scholar
Niemeyer, L. 1978 IEEE Trans. Power Apparatus Syst. 97, 950.CrossRefGoogle Scholar
Niemeyer, L. 1978 IEEE Trans. Power Apparatus Syst. 97, 950.CrossRefGoogle Scholar
Park, K. Y. & Fang, M. T. C. 1993 Proceedings of ICP1O XXI, Vol. 2, p. 68.Google Scholar
Powell, D. J. & Zielinski, A. E. 1993 IEEE Trans. Magn. 29, 591.CrossRefGoogle Scholar
Ruchti, C. B. & Niemeyer, L. 1986 IEEE Trans. Plasma Sci. 4, 423.CrossRefGoogle Scholar
Shcolnikov, E. Y A., Chebotarev, A. V., Ignatovitch, Kolencky I. L., Kulikov, Y U. A., Melnik, A. V. & Volkov, S. V. 1994 Acceleration of powder materials in an electrothermal launcher. Preprint, Moscow Engineering Physics institute.Google Scholar
Tidman, A., Thio, Y. C., Goldstein, S. A. & Spicer, D. S. 1986 CT-Devices Report 80–7.Google Scholar
Zoler, P., Cuperman, S., Ashkenazy, J., Caner, M. & Kaplan, Z. 1993 a J. Phys. D: Appl. Phys. 28, 657.CrossRefGoogle Scholar
Zoler, D., Cuperman, S., Ashkenazy, J., Caner, M. & Kaplan, Z. 1993 b J. Plasma Phys. 50, 51.CrossRefGoogle Scholar