Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T15:14:33.706Z Has data issue: false hasContentIssue false

Effect of ionization waves on dust chain formation in a DC discharge

Published online by Cambridge University Press:  15 December 2021

L.S. Matthews*
Affiliation:
CASPER, Baylor University, One Bear Place 97316, Waco, TX 76798-7316, USA
K. Vermillion
Affiliation:
CASPER, Baylor University, One Bear Place 97316, Waco, TX 76798-7316, USA
P. Hartmann
Affiliation:
CASPER, Baylor University, One Bear Place 97316, Waco, TX 76798-7316, USA Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, PO Box 49, H-1525 Budapest, Hungary
M. Rosenberg
Affiliation:
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
S. Rostami
Affiliation:
CASPER, Baylor University, One Bear Place 97316, Waco, TX 76798-7316, USA
E.G. Kostadinova
Affiliation:
CASPER, Baylor University, One Bear Place 97316, Waco, TX 76798-7316, USA Physics Department, Auburn University, Auburn, AL 36849, USA
T.W. Hyde
Affiliation:
CASPER, Baylor University, One Bear Place 97316, Waco, TX 76798-7316, USA
M.Y. Pustylnik
Affiliation:
Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Münchener Straße 20, 82234 Weßling, Germany
A.M. Lipaev
Affiliation:
Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, 125412 Moscow, Russia Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia
A.D. Usachev
Affiliation:
Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, 125412 Moscow, Russia
A.V. Zobnin
Affiliation:
Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, 125412 Moscow, Russia
M.H. Thoma
Affiliation:
I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
O.F. Petrov
Affiliation:
CASPER, Baylor University, One Bear Place 97316, Waco, TX 76798-7316, USA Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, 125412 Moscow, Russia Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region 141700, Russia
H.M. Thomas
Affiliation:
Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Münchener Straße 20, 82234 Weßling, Germany
O.V. Novitskiy
Affiliation:
Gagarin Research and Test Cosmonaut Training Center, 141160 Star City, Moscow Region, Russia
*
Email address for correspondence: lorin_matthews@baylor.edu

Abstract

An interesting aspect of complex plasma is its ability to self-organize into a variety of structural configurations and undergo transitions between these states. A striking phenomenon is the isotropic-to-string transition observed in electrorheological complex plasma under the influence of a symmetric ion wake field. Such transitions have been investigated using the Plasma Kristall-4 (PK-4) microgravity laboratory on the International Space Station. Recent experiments and numerical simulations have shown that, under PK-4-relevant discharge conditions, the seemingly homogeneous direct current discharge column is highly inhomogeneous, with large axial electric field oscillations associated with ionization waves occurring on microsecond time scales. A multi-scale numerical model of the dust–plasma interactions is employed to investigate the role of the electric field in the charge of individual dust grains, the ion wake field and the order of string-like structures. Results are compared with those for dust strings formed in similar conditions in the PK-4 experiment.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashrafi, K. S., Yousefi, R., Chen, M., Matthews, L. S. & Hyde, T. W. 2020 Dust as probes: determining confinement and interaction forces. Phys. Rev. E 102, 043210.CrossRefGoogle ScholarPubMed
Chen, M., Dropmann, M., Zhang, B., Matthews, L. S. & Hyde, T. W. 2016 Ion-wake field inside a glass box. Phys. Rev. E 94, 033201.CrossRefGoogle ScholarPubMed
Dietz, C., Bergert, R., Steinmüller, B., Kretschmer, M., Mitic, S. & Thoma, M. H. 2018 fcc-bcc phase transition in plasma crystals using time-resolved measurements. Phys. Rev. E 97, 043203.CrossRefGoogle ScholarPubMed
Dietz, C., Kretschmer, M., Steinmüller, B. & Thoma, M. 2017 Recent microgravity experiments with complex direct current plasmas. Contrib. Plasma Phys. 58 (1), 2129.CrossRefGoogle Scholar
Donkó, Z. 2011 Particle simulation methods for studies of low-pressure plasma sources. Plasma Sources Sci. Technol. 20, 024001.CrossRefGoogle Scholar
Du, C.-R., Sütterlin, K. R., Jiang, K., Räth, C., Ivlev, A. V., Khrapak, S., Schwabe, M., Thomas, H. M., Fortov, V. E., Lipaev, A. M., et al. 2012 Experimental investigation on lane formation in complex plasmas under microgravity conditions. New J. Phys. 14 (7), 073058.CrossRefGoogle Scholar
Hartmann, P., Rosenberg, M., Juhasz, Z., Matthews, L. S., Sanford, D. L., Vermillion, K., Reyes, J. C. & Hyde, T. W. 2020 Ionization waves in the PK-4 direct current neon discharge. Plasma Sources Sci. Technol. 29 (11), 115014.CrossRefGoogle Scholar
Hutchinson, I. H. 2011 Nonlinear collisionless plasma wakes of small particles. Phys. Plasmas 18 (3), 032111.CrossRefGoogle Scholar
Hutchinson, I. H. 2012 Intergrain forces in low-mach-number plasma wakes. Phys. Rev. E 85, 066409.CrossRefGoogle ScholarPubMed
Ivlev, A. V., Morfill, G. E., Thomas, H. M., Räth, C., Joyce, G., Huber, P., Kompaneets, R., Fortov, V. E., Lipaev, A. M., Molotkov, V. I., et al. 2008 First observation of electrorheological plasmas. Phys. Rev. Lett. 100, 095003.CrossRefGoogle ScholarPubMed
Ivlev, A. V., Thoma, M. H., Räth, C., Joyce, G. & Morfill, G. E. 2011 Complex plasmas in external fields: The role of non-hamiltonian interactions. Phys. Rev. Lett. 106, 155001.CrossRefGoogle ScholarPubMed
Jaiswal, S., Pustylnik, M. Y., Zhdanov, S., Thomas, H. M., Lipaev, A. M., Usachev, A. D., Molotkov, V. I., Fortov, V. E., Thoma, M. H. & Novitskii, O. V. 2018 Dust density waves in a dc flowing complex plasma with discharge polarity reversal. Phys. Plasmas 25 (8), 083705.CrossRefGoogle Scholar
Khrapak, S. A., Tolias, P., Ratynskaia, S., Chaudhuri, M., Zobnin, A., Usachev, A., Rau, C., Thoma, M. H., Petrov, O. F., Fortov, V. E., et al. 2012 Grain charging in an intermediately collisional plasma. Europhys. Lett. 97 (3), 35001.CrossRefGoogle Scholar
Kompaneets, R., Morfill, G. E. & Ivlev, A. V. 2016 Wakes in complex plasmas: a self-consistent kinetic theory. Phys. Rev. E 93, 063201.CrossRefGoogle ScholarPubMed
Kong, J., Hyde, T. W., Matthews, L., Qiao, K., Zhang, Z. & Douglass, A. 2011 One-dimensional vertical dust strings in a glass box. Phys. Rev. E 84, 016411.CrossRefGoogle Scholar
Kong, J., Qiao, K., Matthews, L. S. & Hyde, T. W. 2014 Interaction force in a vertical dust chain inside a glass box. Phys. Rev. E 90, 013107.CrossRefGoogle Scholar
Kwon, S. H., Piao, S. H. & Choi, H. 2015 Electric field-responsive mesoporous suspensions: a review. Nanomaterials 5 (4), 22492267.CrossRefGoogle ScholarPubMed
Liu, B., Goree, J., Pustylnik, M. Y., Thomas, H. M., Fortov, V. E., Lipaev, A. M., Usachev, A. D., Molotkov, V. I., Petrov, O. F. & Thoma, M. H. 2018 Particle velocity distribution in a three-dimensional dusty plasma under microgravity conditions. AIP Conf. Proc. 1925 (1), 020005.CrossRefGoogle Scholar
Matthews, L. S., Sanford, D. S., Kostadinvoa, E., Ashrafi, K. S., Guay, E. & Hyde, T. W. 2019 Dust charging in dynamic ion wakes. Phys. Plasmas 27, 023703.CrossRefGoogle Scholar
Piel, A. 2017 Molecular dynamics simulations of ion flows around dust particles. Phys. Plasmas 24 (3), 033712.CrossRefGoogle Scholar
Polyakov, D. N., Shumova, V. V. & Vasilyak, L. M. 2017 Transformations of dust structures in glow dc discharge in neon: effect of gas temperature and discharge current. Plasma Sources Sci. Technol. 26 (8), 08LT01.CrossRefGoogle Scholar
Pustylnik, M. Y., Fink, M. A., Nosenko, V., Antonova, T., Hagl, T., Thomas, H. M., Zobnin, A. V., Lipaev, A. M., Usachev, A. D., Molotkov, V. I., et al. 2016 Plasmakristall-4: new complex (dusty) plasma laboratory on board the international space station. Rev. Sci. Instrum. 87 (9), 093505.CrossRefGoogle ScholarPubMed
Robertson, S. & Sternovsky, Z. 2003 Monte Carlo model of ion mobility and diffusion for low and high electric fields. Phys. Rev. E 67, 046405.CrossRefGoogle ScholarPubMed
Schwabe, M., Rubin-Zuzic, M., Räth, C. & Pustylnik, M. 2019 Image registration with particles, examplified with the complex plasma laboratory pk-4 on board the international space station. J. Imaging 5 (3), 39.CrossRefGoogle ScholarPubMed
Skullerud, H. R. & Larsen, P. H. 1990 Mobility and diffusion of atomic helium and neon ions in their parent gases. J. Phys. B 23 (6), 1017.CrossRefGoogle Scholar
Sütterlin, K. R., Wysocki, A., Ivlev, A. V., Räth, C., Thomas, H. M., Rubin-Zuzic, M., Goedheer, W. J., Fortov, V. E., Lipaev, A. M., Molotkov, V. I., et al. 2009 Dynamics of lane formation in driven binary complex plasmas. Phys. Rev. Lett. 102, 085003.CrossRefGoogle ScholarPubMed
Thomas, H. M., Schwabe, M., Pustylnik, M. Y., Knapek, C. A., Molotkov, I. V., Lipaev, A. M., Petrov, O. F., Fortov, V. E. & Khrapak, S. A. 2019 Complex plasma research on the international space station. Plasma Phys. Control. Fusion 61 (1), 0.CrossRefGoogle Scholar
Trottenberg, T., Block, D. & Piel, A. 2006 Dust confinement and dust-acoustic waves in weakly magnetized anodic plasmas. Phys. Plasmas 13, 042105.CrossRefGoogle Scholar
Usachev, A., Zobnin, A., Petrov, O., Fortov, V., Thoma, M., Kretschmer, M., Ratynskaia, S., Quinn, R., Hoefner, H. & Morfill, G. 2004 The project “Plasmakristall - 4” (PK-4) – a dusty plasma experiment in a combined dc/rf (i) discharge plasma under microgravity conditions. Czech. J. Phys. 54 (3), C639.CrossRefGoogle Scholar
Usachev, A. D., Zobnin, A. V., Petrov, O. F., Fortov, V. E., Thoma, M. H., Pustylnik, M. Y., Fink, M. A. & Morfill, G. E. 2016 Elongated dust clouds in a uniform dc positive column of low pressure gas discharge. Plasma Sources Sci. Technol. 25 (3), 035009.CrossRefGoogle Scholar
Usachev, A. D., Zobnin, A. V., Shonenkov, A. V., Lipaev, A. M., Molotkov, V. I., Petrov, O. F., Fortov, V. E., Pustyl'nik, M. Y., Fink, M. A., Thoma, M. A., et al. 2018 Influence of dust particles on the neon spectral line intensities at the uniform positive column of dc discharge at the space apparatus “Plasma Kristall-4”. J. Phys.: Conf. Ser. 946 (1), 012143.Google Scholar
Zobnin, A. V., Usachev, A. D., Lipaev, A. M., Petrov, O. F., Fortov, V. E., Pustylnik, M. Y., Thomas, H. M., Fink, M. A., Thoma, M. H. & Padalka, G. I. 2016 Transverse ionization instability of the elongated dust cloud in the gas discharge uniform positive column under microgravity conditions. J. Phys.: Conf. Ser. 774 (1), 012174.Google Scholar